首页> 外文期刊>Engineering Applications of Artificial Intelligence >Satin bowerbird optimizer: A new optimization algorithm to optimize ANFIS for software development effort estimation
【24h】

Satin bowerbird optimizer: A new optimization algorithm to optimize ANFIS for software development effort estimation

机译:Satin Bowerbird Optimizer:一种新的优化算法,可优化ANFIS以进行软件开发工作量估算

获取原文
获取原文并翻译 | 示例

摘要

Accurate software development effort estimation is crucial to efficient planning of software projects. Due to complex nature of software projects, development effort estimation has become a challenging issue which must be seriously considered at the early stages of project. Insufficient information and uncertain requirements are the main reasons behind unreliable estimations in this area. Although numerous effort estimation models have been proposed during the last decade, accuracy level is not satisfying enough. This paper presents a new model based on a combination of adaptive neuro-fuzzy inference system (ANFIS) and satin bower bird optimization algorithm (SBO) to reach more accurate software development effort estimations. SBO is a novel optimization algorithm proposed to adjust the components of ANFIS through applying small and reasonable changes in variables. The proposed hybrid model is an optimized neuro-fuzzy based estimation model which is capable of producing accurate estimations in a wide range of software projects. The proposed optimization algorithm is compared against other bio inspired optimization algorithms using 13 standard test functions including unimodal and multimodal functions. Moreover, the proposed hybrid model is evaluated using three real data sets. Results show that the proposed model can significantly improve the performance metrics.
机译:准确的软件开发工作量估算对于有效规划软件项目至关重要。由于软件项目的复杂性,开发工作量估算已成为一个具有挑战性的问题,必须在项目的早期阶段认真考虑。信息不足和需求不确定是造成该领域估算不可靠的主要原因。尽管在过去的十年中已经提出了许多工作量估计模型,但是准确性水平还不能令人满意。本文提出了一种基于自适应神经模糊推理系统(ANFIS)和缎面凉亭鸟优化算法(SBO)相结合的新模型,以实现更准确的软件开发工作量估算。 SBO是一种新颖的优化算法,提出了通过应用变量的小而合理的调整来调整ANFIS的组件的方法。提出的混合模型是一种基于优化的神经模糊估计模型,能够在各种软件项目中产生准确的估计。使用包括单峰函数和多峰函数在内的13种标准测试函数,将提出的优化算法与其他受生物启发的优化算法进行了比较。此外,使用三个真实数据集评估了提出的混合模型。结果表明,该模型可以显着提高性能指标。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号