首页> 外文期刊>Engineering Applications of Artificial Intelligence >Adaptive online sequential extreme learning machine for frequency-dependent noise data on offshore oil rig
【24h】

Adaptive online sequential extreme learning machine for frequency-dependent noise data on offshore oil rig

机译:自适应在线顺序极限学习机,用于海上石油钻井平台的频率相关噪声数据

获取原文
获取原文并翻译 | 示例

摘要

An adaptive online sequential extreme learning machine (AOS-ELM) is proposed to predict the frequency-dependent sound pressure level (SPL) data of various compartments onboard of the offshore platform. With limited samples and sequential data for training during the initial design stage, conventional neural network training gives significant errors and long computing time when it maps the available inputs to sound pressure level for the entire offshore platform. By using AOS-ELM, it allows a gradual increase in the dataset that is hard to obtain during the initial design stage of the offshore platform. The SPL prediction using AOS-ELM has improved with smaller root mean squared error in testing and shorter training time as compared with other types of ELM based learnings and other gradient based methods in neural network training.
机译:提出了一种自适应在线顺序极限学习机(AOS-ELM)来预测海上平台船上各个舱室的频率相关声压级(SPL)数据。在初始设计阶段,只有有限的样本和顺序数据可供训练,传统的神经网络训练在将可用输入映射到整个海上平台的声压级时,会带来重大错误和较长的计算时间。通过使用AOS-ELM,它可以逐步增加在海上平台的初始设计阶段很难获得的数据集。与其他类型的基于ELM的学习和其他基于梯度的方法在神经网络训练中相比,使用AOS-ELM进行的SPL预测得到了改进,测试的均方根误差更小,训练时间更短。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号