首页> 外文期刊>Engineering Applications of Artificial Intelligence >Efficient incremental high utility pattern mining based on pre-large concept
【24h】

Efficient incremental high utility pattern mining based on pre-large concept

机译:基于预大概念的高效增量式高实用模式挖掘

获取原文
获取原文并翻译 | 示例

摘要

High utility pattern mining has been actively researched in recent years, because it treats real world databases better than traditional pattern mining approaches. Retail data of markets and web access information data are representative examples of the real world data. However, fundamental high utility pattern mining methods aiming static data are not proper for dynamic data environments. The pre-large concept based methods have efficiency compared to static approaches when dealing with dynamic data. There are several methods dealing with dynamic data based on the pre-large concept, but they have drawbacks that they have to scan original data again and generate many candidate patterns. These two drawbacks are the main issues of performance degradation. To handle these problems, in this paper, we suggest an efficient approach of pre-large concept based incremental utility pattern mining. The proposed method adopts a more proper data structure to mine high utility patterns in incremental environments. The state-of-the-art method performs a database scan operation many times, which is not suitable for incremental environments. However, our method needs only one scan, which is more suitable to process dynamic data compared to the state-of-the-art method. In addition, with the proposed data structure, high utility patterns can be mined in dynamic environments more efficiently than the former method. Experimental results on real datasets and synthetic datasets show that the proposed method has better performance than the former method.
机译:近年来,已经积极研究了高实用性模式挖掘,因为它比传统模式挖掘方法更能处理现实世界的数据库。市场的零售数据和Web访问信息数据是现实世界数据的代表性示例。但是,针对静态数据的基本的高实用性模式挖掘方法不适用于动态数据环境。与静态方法相比,基于大概念的方法在处理动态数据时效率更高。有几种基于预大概念的动态数据处理方法,但是它们的缺点是必须再次扫描原始数据并生成许多候选模式。这两个缺点是性能下降的主要问题。为了解决这些问题,在本文中,我们提出了一种基于大概念的有效增量方法的有效方法。所提出的方法采用更合适的数据结构来挖掘增量环境中的高实用性模式。最先进的方法多次执行数据库扫描操作,不适用于增量环境。但是,我们的方法仅需要一次扫描,与最新方法相比,它更适合处理动态数据。另外,利用所提出的数据结构,可以比以前的方法在动态环境中更有效地挖掘高实用性模式。在真实数据集和合成数据集上的实验结果表明,该方法具有比以前的方法更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号