首页> 外文期刊>Future generation computer systems >Efficient transaction deleting approach of pre-large based high utility pattern mining in dynamic databases
【24h】

Efficient transaction deleting approach of pre-large based high utility pattern mining in dynamic databases

机译:动态数据库中基于预大型的高效模式挖掘的高效事务删除方法

获取原文
获取原文并翻译 | 示例

摘要

Most traditional pattern mining is designed to process binary databases, so there is a limit to extracting meaningful information from real-world databases. To solve this problem, high utility pattern mining method for analyzing a non-binary database has been proposed and it is being actively studied recently. However, commonly encountered high utility pattern mining is not suitable for dynamic databases, which are subject to continuous changes, as they handle static databases. Transactions can be inserted, deleted, or modified from the database in a dynamic database environment. The pre-large method, which is one of the various techniques of processing a dynamic database, can efficiently operate by reducing the rescan of the original database using two thresholds. In this paper, we propose a method for mining high utility patterns applying a pre-large technique in an environment where transactions are continuously deleted. Also, we show on a basis of experimental results using real-world and synthetic datasets that the proposed algorithm exhibits better performance than the state-of-the-art methods. (C) 2019 Published by Elsevier B.V.
机译:大多数传统的模式挖掘都是为处理二进制数据库而设计的,因此从现实数据库中提取有意义的信息是有局限性的。为了解决这个问题,已经提出了一种用于分析非二进制数据库的高效模式挖掘方法,并且正在积极地进行研究。但是,通常遇到的高实用性模式挖掘不适用于动态数据库,因为它们处理静态数据库,因此它们会不断变化。可以在动态数据库环境中从数据库中插入,删除或修改事务。作为处理动态数据库的各种技术之一的预大方法可以通过使用两个阈值减少对原始数据库的重新扫描来有效地进行操作。在本文中,我们提出了一种在交易被连续删除的环境中应用预大技术挖掘高实用性模式的方法。此外,我们在使用现实世界和合成数据集的实验结果的基础上表明,所提出的算法比最新方法具有更好的性能。 (C)2019由Elsevier B.V.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号