【24h】

Incremental Data Mining for Sequential Patterns Using Pre-large Sequences

机译:使用预大序列的顺序模式的增量数据挖掘

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a novel incremental mining algorithm for sequential patterns based on the concept of pre-large sequences to reduce the need for rescanning original databases. Pre-large sequences are defined by a lower support threshold and an upper support threshold. They act as gaps to avoid the movements of sequences directly from large to small and vice-versa. The proposed algorithm does not require rescanning an original database until the accumulative amount of new added customer sequences exceeds a safety bound, which depends on the size of the database. Thus, if the size of a database grows larger, the number of new transactions allowed before database rescanning will be larger too. The proposed approach thus becomes increasingly efficient as a database grows.
机译:在本文中,我们基于预大序列的概念提出了一种新颖的顺序模式增量式挖掘算法,以减少重新扫描原始数据库的需求。预先大的序列由较低的支持阈值和较高的支持阈值定义。它们充当间隙,以避免序列直接从大到小移动,反之亦然。所提出的算法不需要重新扫描原始数据库,直到新添加的客户序列的累积数量超过安全范围为止,该安全范围取决于数据库的大小。因此,如果数据库的大小变大,则数据库重新扫描之前允许的新事务数也将变大。因此,随着数据库的增长,所提出的方法变得越来越有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号