首页> 外文期刊>Engineering Applications of Artificial Intelligence >A population-based iterated greedy algorithm to minimize total flowtime for the distributed blocking flowshop scheduling problem
【24h】

A population-based iterated greedy algorithm to minimize total flowtime for the distributed blocking flowshop scheduling problem

机译:一种基于人口的迭代贪婪算法,可最大限度地减少分布式阻止流程调度问题的总流量时间

获取原文
获取原文并翻译 | 示例

摘要

We consider the distributed blocking flowshop scheduling problem (DBFSP) which is a meaningful generalization of the blocking flowshop scheduling problem in the distributed production environment. The objective of minimizing the total flowtime is relevant and important in the current dynamic manufacturing environment, but, as far as we know, it has not been investigated in the DBFSP previously. In this paper, a population-based iterated greedy (PBIG) algorithm is proposed to solve the DBFSP with the total flowtime criterion, which takes the advantage of both the population-based search approach and the iterated greedy algorithm. First, an effective constructive heuristic is proposed by integrating two existing constructive approaches to initialize the population with a high level of quality and diversity. Second, three different procedures to generate the offspring solutions are tested for the effective exploration capability, each of which rationally combines the destruction, reconstruction and selection operator. Third, the insertion neighborhood and swap neighborhood are investigated to enhance the local exploitation ability and a hybrid local search procedure that utilizes simultaneously both the two neighborhoods are proposed. The comprehensive experimental evaluation based on a total of 720 well-known instances shows that the proposed algorithms outperform the existing effective algorithms at a significant margin.
机译:我们考虑分布式阻止流程调度问题(DBFSP),它是分布式生产环境中阻止流程调度问题的有意义的泛化。最小化总流动时间的目标是在目前的动态制造环境中具有相关和重要的,但据我们所知,它之前未在DBFSP中进行调查。在本文中,提出了一种基于群体的迭代贪婪(PBIG)算法,以解决与总流量时间标准的DBFSP,这取得了基于人口的搜索方法和迭代贪婪算法的优势。首先,通过整合两个现有的建设性方法来提出有效的建设性启发式,以利用高质量和多样性初始化人口。其次,测试了三种不同的程序来生成后代解决方案的有效勘探能力,每个都合理地结合了破坏,重建和选择操作员。第三,调查插入邻域和交换邻域以增强局部利用能力和混合本地搜索过程,其同时提出两个邻域。基于720个公知实例的综合实验评估表明,所提出的算法优于现有的有效算法,以显着的余量。

著录项

  • 来源
    《Engineering Applications of Artificial Intelligence》 |2021年第9期|104375.1-104375.12|共12页
  • 作者单位

    School of Mechatronic Engineering and Automation Shanghai University Shanghai 200072 PR China;

    School of Mechatronic Engineering and Automation Shanghai University Shanghai 200072 PR China School of Computer Science Liaocheng University Liaocheng 252000 PR China;

    State Key Lab of Digital Manufacturing Equipment & Technology in Huazhong University of Science & Technology Wuhan 430074 PR China;

    School of Computer Science Liaocheng University Liaocheng 252000 PR China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Flowshop; Total flowtime; Distributed; Iterated greedy algorithm; Blocking;

    机译:流动;总流量时间;分散式;迭代贪婪算法;阻止;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号