首页> 外文期刊>Engineering Applications of Artificial Intelligence >Semi-supervised support vector regression based on data similarity and its application to rock-mechanics parameters estimation
【24h】

Semi-supervised support vector regression based on data similarity and its application to rock-mechanics parameters estimation

机译:基于数据相似性的半监督支持向量回归及其在摇滚力学参数估计中的应用

获取原文
获取原文并翻译 | 示例

摘要

Rock-mechanics parameters such as Young's modulus and Poisson's ratio are critical to geomechanical analysis and resource exploration. Because these parameters come from laboratory measurement, they present some characteristics such as insufficient samples and contamination of outliers. In this paper, a novel semi-supervised support vector machine soft sensor is devised considering the characteristics of the parameters. First, it takes into account data similarity and selects labeled data set that are most similar to the continuous unlabeled data set at each iteration to improve estimation performance. Meanwhile, an outlier deletion algorithm is developed for a better similarity comparison. After that, a semi-supervised approach is presented for the estimation of rock-mechanics parameters, it can leverage continuous unlabeled data to train the model dynamically. Finally, the verification of our method is carried out on data set from UCI (University of California, Irvine) and several drilling sites. The results demonstrate that our method outperforms eight well-known methods in estimation accuracy.
机译:较年轻的模量和泊松比等摇滚力学参数对地质力学分析和资源勘探至关重要。由于这些参数来自实验室测量,因此它们呈现了一些特征,例如样品不足和异常值的污染。在本文中,考虑到参数的特征,设计了一种新型半监控支持向量机软传感器。首先,它考虑了数据相似性,并选择标记的数据集,其与每次迭代时的连续未标记的数据集最相似,以提高估计性能。同时,开发了一个更好的相似性比较的异常删除算法。之后,提出了一种半监督方法来估计摇滚力学参数,它可以利用连续的未标记数据动态训练模型。最后,我们的方法验证了来自UCI(加利福尼亚大学,Irvine)和几个钻井场所的数据集。结果表明,我们的方法在估计精度中优于八种众所周知的方法。

著录项

  • 来源
    《Engineering Applications of Artificial Intelligence》 |2021年第9期|104317.1-104317.13|共13页
  • 作者单位

    School of Automation China University of Geosciences Wuhan 430074 China Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems Wuhan 430074 China Engineering Research Center of Intelligent Technology for Geo-Exploration Ministry of Education Wuhan 430074 China;

    School of Automation China University of Geosciences Wuhan 430074 China Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems Wuhan 430074 China Engineering Research Center of Intelligent Technology for Geo-Exploration Ministry of Education Wuhan 430074 China;

    School of Automation China University of Geosciences Wuhan 430074 China Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems Wuhan 430074 China Engineering Research Center of Intelligent Technology for Geo-Exploration Ministry of Education Wuhan 430074 China;

    School of Engineering Tokyo University of Technology Tokyo 192-0982 Japan;

    School of Engineering Tokyo University of Technology Tokyo 192-0982 Japan;

    School of Automation China University of Geosciences Wuhan 430074 China Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems Wuhan 430074 China Engineering Research Center of Intelligent Technology for Geo-Exploration Ministry of Education Wuhan 430074 China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Data similarity; Rock-mechanics parameters; Semi-supervised learning; Support vector regression;

    机译:数据相似性;摇滚力学参数;半监督学习;支持向量回归;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号