首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >Automatic Parameter Optimization for Support Vector Regression for Land and Sea Surface Temperature Estimation From Remote Sensing Data
【24h】

Automatic Parameter Optimization for Support Vector Regression for Land and Sea Surface Temperature Estimation From Remote Sensing Data

机译:利用遥感数据估算陆地和海面温度的支持向量回归的自动参数优化

获取原文
获取原文并翻译 | 示例

摘要

Land surface temperature (LST) and sea surface temperature (SST) are important quantities for many environmental models. Remote sensing is a source of information for their estimation on both regional and global scales. Many algorithms have been devised to estimate LST and SST from satellite data, most of which require a priori information about the surface and the atmosphere. A recently proposed approach involves the use of support vector machines (SVMs). Based on satellite data and corresponding in situ measurements, they generate an approximation of the relation between them, which can subsequently be used to estimate unknown surface temperatures from additional satellite data. Such a strategy requires the user to set several internal parameters. In this paper, a method is proposed for automatically setting these parameters to quasi-optimal values in the sense of minimum estimation errors. This is achieved by minimizing a functional correlated to regression errors (i.e., the “span-bound” upper bound on the leave-one-out (LOO) error) which can be computed by using only the training set, without need for a further validation set. In order to minimize this functional, Powell''s algorithm is adopted, since it is applicable also to nondifferentiable functions. Experimental results yielded by the proposed method are similar in accuracy to those achieved by cross-validation and by a grid search for the parameter configuration which yields the best test-set accuracy. However, the proposed method gives a dramatic reduction in the computational time required, particularly when many training samples are available.
机译:陆地表面温度(LST)和海面温度(SST)对于许多环境模型而言都是重要的指标。遥感是在区域和全球范围进行估计的信息来源。已经设计出许多算法来根据卫星数据估算LST和SST,其中大多数算法需要有关地面和大气的先验信息。最近提出的方法涉及支持向量机(SVM)的使用。基于卫星数据和相应的原位测量,它们会生成它们之间关系的近似值,随后可以将其用于从其他卫星数据中估算未知的地表温度。这种策略要求用户设置几个内部参数。本文提出了一种在最小估计误差的意义上将这些参数自动设置为准最佳值的方法。这是通过最小化与回归误差(即,留一法(LOO)误差的“跨度”上限)相关的函数实现的,该误差可以仅使用训练集进行计算,而无需进一步验证集。为了最小化该功能,采用了鲍威尔算法,因为它也适用于不可微函数。所提出的方法产生的实验结果的准确性与通过交叉验证和通过网格搜索参数配置而获得的结果相似,从而产生最佳的测试集准确性。但是,提出的方法大大减少了所需的计算时间,尤其是在有许多训练样本可用时。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号