首页> 外文期刊>Engineering Applications of Artificial Intelligence >EMORL: Effective multi-objective reinforcement learning method for hyperparameter optimization
【24h】

EMORL: Effective multi-objective reinforcement learning method for hyperparameter optimization

机译:EmORL:高参考仪优化的有效多目标强化学习方法

获取原文
获取原文并翻译 | 示例

摘要

Hyperparameter optimization is critical for the performance of machine learning algorithms. Significant efforts have been dedicated to improve the final accuracy of algorithm by hyperparameter tuning. However, some indicators (such as latency, cpu utilization) are also very important in the actual environment. In this paper, we propose a novel method EMORL (Effective Multi-Objective Reinforcement Learning) based on multi-objective reinforcement learning for hyperparameter optimization to solve the above limitations. Specifically, we extend hyperparameter optimization problem to the reinforcement learning framework and employ an agent to select hyperparameters sequentially, and design a scalarization function that combines accuracy and latency as a multi-objective reward to guide the policy update. To improve the efficiency of hyperparameter optimization, previously successful configuration is reused for reshaping the advantage function. In the experiment, we apply the proposed method to tune the hyperparameters of the extreme Gradient Boosting on 101 tasks and convolutional neural networks on 2 tasks. The experimental results demonstrate that the proposed method is better than other methods in most tasks, especially in terms of latency. In addition, we verify the various components of the proposed method through ablation experiments.
机译:HyperParameter优化对于机器学习算法的性能至关重要。通过HyperParameter调整,致力于提高算法的最终准确性。但是,某些指标(如延迟,CPU利用率)在实际环境中也非常重要。本文提出了一种基于多目标强化学习的新型方法EmOrl(有效的多目标强化学习),以解决上述限制。具体而言,我们将HyperParameter优化问题扩展到加强学习框架,并使用代理程序顺序选择Hyper参数,并设计将准确性和延迟结合为多目标奖励以指导策略更新的标准化功能。为了提高高参数优化的效率,以前成功的配置重复用于重塑优势功能。在实验中,我们应用所提出的方法来调整101个任务和卷积神经网络上的极端渐变的超级参数和2个任务。实验结果表明,所提出的方法优于大多数任务中的其他方法,特别是在延迟方面。此外,我们通过消融实验验证所提出的方法的各种组分。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号