首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Dynamical Hyperparameter Optimization via Deep Reinforcement Learning in Tracking
【24h】

Dynamical Hyperparameter Optimization via Deep Reinforcement Learning in Tracking

机译:深度加固学习追踪动态近双参数优化

获取原文
获取原文并翻译 | 示例

摘要

Hyperparameters are numerical pre-sets whose values are assigned prior to the commencement of a learning process. Selecting appropriate hyperparameters is often critical for achieving satisfactory performance in many vision problems, such as deep learning-based visual object tracking. However, it is often difficult to determine their optimal values, especially if they are specific to each video input. Most hyperparameter optimization algorithms tend to search a generic range and are imposed blindly on all sequences. In this paper, we propose a novel dynamical hyperparameter optimization method that adaptively optimizes hyperparameters for a given sequence using an action-prediction network leveraged on continuous deep Q-learning. Since the observation space for object tracking is significantly more complex than those in traditional control problems, existing continuous deep Q-learning algorithms cannot be directly applied. To overcome this challenge, we introduce an efficient heuristic strategy to handle high dimensional state space, while also accelerating the convergence behavior. The proposed algorithm is applied to improve two representative trackers, a Siamese-based one and a correlation-filter-based one, to evaluate its generalizability. Their superior performances on several popular benchmarks are clearly demonstrated. Our source code is available at https://github.com/shenjianbing/dqltracking.
机译:HyperParameters是数字预定的数字预定,在学习过程开始之前分配的值。选择合适的超参数对于在许多视觉问题中实现令人满意的性能通常是至关重要的,例如基于深度学习的视觉对象跟踪。然而,通常难以确定其最佳值,特别是如果它们特定于每个视频输入。大多数封路数据计优化算法倾向于搜索通用范围,并且在所有序列上盲目地施加。在本文中,我们提出了一种新的动态型高参数优化方法,其使用在连续深度Q-Learning上利用的动作预测网络自适应地优化给定序列的超参数。由于对象跟踪的观察空间比传统控制问题中的观测空间显着更复杂,因此无法直接应用现有的连续深度Q学习算法。为了克服这一挑战,我们介绍了一种高效的启发式战略来处理高维状态空间,同时也加速了收敛行为。该算法应用于改进两个代表性跟踪器,基于暹罗和基于相关滤波器的算法,以评估其概括性。清楚地证明了他们对几个流行基准的优越性表现。我们的源代码可在https://github.com/shenjianbing/dqltracking中获得。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号