首页> 外文期刊>Engineering Applications of Artificial Intelligence >Unsupervised concrete feature selection based on mutual information for diagnosing faults and cyber-attacks in power systems
【24h】

Unsupervised concrete feature selection based on mutual information for diagnosing faults and cyber-attacks in power systems

机译:基于诊断电力系统故障和网络攻击的互动的混凝土特征选择

获取原文
获取原文并翻译 | 示例

摘要

Removing the redundant features from massive data collected from power systems is of paramount importance in improving the efficiency of data-driven diagnostic systems. This work proposes a novel concrete feature selection based on mutual information, called CFMI, for selecting proper features to enhance diagnosing faults and cyber-attacks in power systems. The proposed technique is then compared with various state-of-the-art techniques and a comprehensive study has been performed on the selected features. All techniques are evaluated with respect to simulated scenarios on IEEE 39-bus system and a Three-Bus Two-Line experimental setup. The attained results, on one hand, verify the superiority of the proposed CFMI technique over other techniques. On the other hand, the selected features from both setups denote that current and voltage features are more informative than other features for diagnostic systems. Furthermore, the results of the comprehensive study shows that those features collected from generation buses are of higher priority for diagnostic systems.
机译:从电力系统收集的大规模数据中删除冗余功能对于提高数据驱动诊断系统的效率至关重要。这项工作提出了一种基于相互信息的新颖的具体特征选择,称为CFMI,用于选择适当的功能,以增强电力系统中的诊断故障和网络攻击。然后将所提出的技术与各种最先进的技术进行比较,并且对所选特征进行了综合研究。关于IEEE 39总线系统的模拟场景和三总线两行实验设置,评估所有技术。一方面,达到的结果验证了所提出的CFMI技术的优越性。另一方面,来自两个设置的所选功能表示电流和电压特征比诊断系统的其他功能更丰富。此外,综合研究的结果表明,从生成总线收集的这些功能具有更高的诊断系统优先级。

著录项

  • 来源
    《Engineering Applications of Artificial Intelligence》 |2021年第4期|104150.1-104150.13|共13页
  • 作者单位

    Department of Electrical and Computer Engineering University of Windsor 401 Sunset Avenue Windsor N9B 3P4 Ontario Canada;

    Department of Electrical and Computer Engineering University of Windsor 401 Sunset Avenue Windsor N9B 3P4 Ontario Canada;

    Department of Electrical and Computer Engineering University of Windsor 401 Sunset Avenue Windsor N9B 3P4 Ontario Canada School of Computer Science University of Windsor 401 Sunset Avenue Windsor N9B 3P4 Ontario Canada;

    Department of Electrical and Computer Engineering University of Windsor 401 Sunset Avenue Windsor N9B 3P4 Ontario Canada;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Concrete feature selection; Mutual information; Faults; Cyber-attacks; Power systems;

    机译:具体特征选择;相互信息;缺陷;网络攻击;电力系统;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号