首页> 外文会议>2012 IEEE International Workshop on Machine Learning for Signal Processing. >Unsupervised feature selection based on non-parametric mutual information
【24h】

Unsupervised feature selection based on non-parametric mutual information

机译:基于非参数互信息的无监督特征选择

获取原文
获取原文并翻译 | 示例

摘要

We present a novel filter approach to unsupervised feature selection based on the mutual information estimation between features. Our feature selection approach does not impose a parametric model on the data and no clustering structure is estimated. Instead, to measure the statistical dependence between features, we employ a mutual information criterion, which is computed by using a non-parametric method, and remove uncorrelated features. Numerical experiments on synthetic and real world tasks show that the performance of our algorithm is comparable to previously suggested state-of-the-art methods.
机译:我们提出了一种基于特征之间相互信息估计的无监督特征选择的新颖过滤方法。我们的特征选择方法没有在数据上施加参数模型,并且没有估计聚类结构。相反,为了测量特征之间的统计依赖性,我们采用了互信息标准,该标准是使用非参数方法计算的,并删除了不相关的特征。在合成和现实世界任务上的数值实验表明,我们的算法的性能可与之前建议的最新方法相媲美。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号