首页> 外文期刊>Engineering Applications of Artificial Intelligence >Online learning of neural networks using random projections and sliding window: A case study of a real industrial process
【24h】

Online learning of neural networks using random projections and sliding window: A case study of a real industrial process

机译:用随机投影和滑动窗口在线学习神经网络:一个真正工业过程的案例研究

获取原文
获取原文并翻译 | 示例

摘要

Online Learning of non-stationary data streams is a challenging task. This work presents an online training method for a Single hidden Layer Feedforward neural Network (SLFN) that learns sample-by-sample, using an adjustable sliding window to adapt the network when data has changed. The method presents a fast training procedure, estimating hidden and output layer parameters independently. Tests with four synthetic datasets showed a good accuracy and quick recovery after drift occurrences. The proposed method is also applied to a real dataset from an industrial process in order to address the anomaly detection task, with the network acting as a classifier. Results show that the method is able to detect drifts prior to anomalies in the pre-fault periods, in the real situation that appeared in the industrial dataset.
机译:非静止数据流的在线学习是一个具有挑战性的任务。这项工作介绍了一个用于单个隐藏的层前馈神经网络(SLFN)的在线培训方法,该方法使用可调滑动窗口学习样本,以在数据发生变化时适应网络。该方法具有快速训练过程,独立地估计隐藏和输出层参数。具有四个合成数据集的测试显示漂移发生后的良好准确性和快速恢复。该方法还应用于来自工业过程的真实数据集,以便通过网络充当分类器来解决异常检测任务。结果表明,该方法能够在出现在工业数据集中出现的真实情况之前检测在故障前期的异常之前的漂移。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号