首页> 外文期刊>Engineering Applications of Artificial Intelligence >Microblog sentiment analysis via embedding social contexts into an attentive LSTM
【24h】

Microblog sentiment analysis via embedding social contexts into an attentive LSTM

机译:微博情绪分析通过将社会背景嵌入到一个周度的LSTM中

获取原文
获取原文并翻译 | 示例

摘要

With the rise of microblogging services like Twitter and Sina Weibo, users are able to post various contents on breaking news, public events, or products conveniently and swiftly. These massive contents carry users' mass sentiment and opinions on various topics, which are a kind of useful and timely source. Traditional microblog sentiment analysis methods often assume that microblogs are independent and identically distributed, they ignore the fact that the microblogs are networked data. Although some methods take the relations between microblogs into consideration, they only use shallow network features which are not sufficient, such as neighbors. Besides, these methods are content-based methods because they cannot use social context information in the prediction stage. To solve this problem, in this paper we use a deep learning method to fully capture the features of microblog relations including both the implicit and explicit ones and use these features to promote microblog sentiment analysis results. Specifically, we first construct a graph which models the relations between microblogs inspired by sentiment consistency and emotional contagion theories. Then we embed the microblog graph and get a continuous vector representation for social contexts of each microblog. After that, we propose a novel neural network to integrate social context knowledge with text information. To handle the problem that different words have different contributions to the classification result, we introduce the attention mechanism into our model. We conduct experiments on three publicly released datasets. The experimental results show that our proposed model can outperform state-of-the-art methods consistently and significantly.
机译:随着Twitter和新浪微博等微博服务的兴起,用户能够在打破新闻,公共活动或产品方面发布各种内容,方便且迅速。这些大规模的内容带有用户的大众情绪和各种主题的意见,这是一种有用和及时的来源。传统的微博情绪分析方法通常假设微博是独立的并且相同分布,它们忽略了微博是网络数据的事实。虽然一些方法考虑了微博之间的关系,但它们仅使用浅网络特征,这是不够的,例如邻居。此外,这些方法是基于内容的方法,因为它们不能在预测阶段中使用社交上下文信息。为了解决这个问题,在本文中,我们使用深度学习方法来完全捕捉微博关系的特征,包括隐式和明确的关系,并使用这些功能来推广微博情感分析结果。具体而言,我们首先构建一个模拟了通过情绪一致性和情绪传染理论的微博的关系模拟了微博的关系。然后我们嵌入了微博图表,并获得了每个微博的社交环境的连续矢量表示。之后,我们提出了一种新颖的神经网络,以将社会背景知识与文本信息集成。为了处理不同单词对分类结果不同贡献的问题,我们将注意力机制介绍到我们的模型中。我们在三个公开发布的数据集进行实验。实验结果表明,我们所提出的模型可以始终如一地呈现最先进的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号