首页> 外文期刊>Engineering Applications of Artificial Intelligence >Web image annotation based on Tri-relational Graph and semantic context analysis
【24h】

Web image annotation based on Tri-relational Graph and semantic context analysis

机译:基于三关节图和语义上下文分析的Web映像注释

获取原文
获取原文并翻译 | 示例

摘要

Web image annotation has became a hot research topic owing to massive image data and abundant semantic context. In this paper, we propose a Tri-relational Graph (TG) model for web image annotation, which comprises the image data graph, the region data graph and the label graph as subgraphs, and connects them by an additional tripartite graph induced from image segmentation results and label assignments. Through analyzing the global visual similarity between images, the visual similarity between regions, the semantic correlations between labels and the relationships between the three subgraphs by TG model, we perform multilevel Random Walk with Restart algorithm on TG to produce vertex-to-vertex relevance, including imageto-region, region-to-label and image-to-label relevances. Then semi-supervised learning is used to predict labels for unannotated image regions by inserting unlabeled images and their regions into TG. In addition, we also analyze the text context information of web image and achieve the semantic and proper nouns for the further label expansion through WordNet. Experiments on public web images datasets demonstrate that our proposed TG model and multilevel RWR algorithm can achieve good performance on image region annotation and outperform the similar image annotation methods. Moreover label expansion by web semantic context analysis can achieve more accurate and abundant annotation results.
机译:由于巨大的图像数据和丰富的语义上下文,Web Image Annotation已成为一个热门的研究主题。在本文中,我们提出了一种用于网页映像注释的三关系图(TG)模型,其包括图像数据图,区域数据图和标签图作为子图,并通过从图像分割引起的附加三方图来连接它们结果和标签分配。通过分析图像之间的全局视觉相似性,区域之间的视觉相似性,标签之间的语义相关性和TG模型的三个子图之间的关系,我们通过TG重启算法进行多级随机漫步,以产生顶点到顶点相关性,包括Imageto-Region,Region-to-Label和图像到标签相关性。然后,半监督学习用于通过将未标记的图像及其区域插入TG来预测未解式图像区域的标签。此外,我们还分析了Web映像的文本上下文信息,并通过Wordnet实现了进一步标签扩展的语义和专有名词。公共网络图像数据集的实验表明,我们所提出的TG模型和多级RWR算法可以在图像区域注释上实现良好的性能,并且优于类似的图像注释方法。此外,Web语义上下文分析的标签扩展可以实现更准确和丰富的注释结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号