首页> 外文OA文献 >A framework for semantic web implementation based on context-oriented controlled automatic annotation.
【2h】

A framework for semantic web implementation based on context-oriented controlled automatic annotation.

机译:基于面向上下文的自动注释的语义Web实现框架。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The Semantic Web is the vision of the future Web. Its aim is to enable machines to process Web documents in a way that makes it possible for the computer software to "understand" the meaning of the document contents. Each document on the Semantic Web is to be enriched with meta-data that express the semantics of its contents. Many infrastructures, technologies and standards have been developed and have proven their theoretical use for the Semantic Web, yet very few applications have been created. Most of the current Semantic Web applications were developed for research purposes. This project investigates the major factors restricting the wide spread of Semantic Web applications. We identify the two most important requirements for a successful implementation as the automatic production of the semantically annotated document, and the creation and maintenance of semantic based knowledge base.udThis research proposes a framework for Semantic Web implementation based on context-oriented controlled automatic Annotation; for short, we called the framework the Semantic Web Implementation Framework (SWIF) and the system that implements this framework the Semantic Web Implementation System (SWIS). The proposed architecture provides for a Semantic Web implementation of stand-alone websites that automatically annotates Web pages before being uploaded to the Intranet or Internet, and maintains persistent storage of Resource Description Framework (RDF) data for both the domain memory, denoted by Control Knowledge, and the meta-data of the Web site¿s pages. We believe that the presented implementation of the major parts of SWIS introduce a competitive system with current state of art Annotation tools and knowledge management systems; this is because it handles input documents in theudiiudcontext in which they are created in addition to the automatic learning and verification of knowledge using only the available computerized corporate databases. In this work, we introduce the concept of Control Knowledge (CK) that represents the application¿s domain memory and use it to verify the extracted knowledge. Learning is based on the number of occurrences of the same piece of information in different documents. We introduce the concept of Verifiability in the context of Annotation by comparing the extracted text¿s meaning with the information in the CK and the use of the proposed database table Verifiability_Tab. We use the linguistic concept Thematic Role in investigating and identifying the correct meaning of words in text documents, this helps correct relation extraction. The verb lexicon used contains the argument structure of each verb together with the thematic structure of the arguments. We also introduce a new method to chunk conjoined statements and identify the missing subject of the produced clauses. We use the semantic class of verbs that relates a list of verbs to a single property in the ontology, which helps in disambiguating the verb in the input text to enable better information extraction and Annotation. Consequently we propose the following definition for the annotated document or what is sometimes called the ¿Intelligent Document¿ ¿The Intelligent Document is the document that clearly expresses its syntax and semantics for human use and software automation¿.udThis work introduces a promising improvement to the quality of the automatically generated annotated document and the quality of the automatically extracted information in the knowledge base. Our approach in the area of using Semantic Webudiiiudtechnology opens new opportunities for diverse areas of applications. E-Learning applications can be greatly improved and become more effective.
机译:语义Web是未来Web的愿景。其目的是使机器能够以某种方式处理Web文档,从而使计算机软件可以“理解”文档内容的含义。语义网上的每个文档都应使用表示其内容语义的元数据进行充实。已经开发了许多基础结构,技术和标准,并证明了它们在语义Web上的理论用途,但是创建的应用程序却很少。当前的大多数语义Web应用程序都是出于研究目的而开发的。该项目研究了限制语义Web应用程序广泛传播的主要因素。我们确定了成功实现的两个最重要的要求,即自动生成语义注释文档以及创建和维护基于语义的知识库。 ud本研究提出了一种基于面向上下文的自动注释的语义Web实现框架。 ;简而言之,我们将该框架称为语义Web实施框架(SWIF),将实现该框架的系统称为语义Web实施系统(SWIS)。提议的体系结构提供了独立网站的语义Web实现,该网站在上载到Intranet或Internet之前自动对网页进行注释,并为两个域内存维护资源描述框架(RDF)数据的持久存储,由Control Knowledge表示。 ,以及网站页面的元数据。我们认为,SWIS主要部分的当前实施方式会引入具有当前最新注释工具和知识管理系统的竞争系统;这是因为除了仅使用可用的计算机化公司数据库进行自动学习和知识验证外,它还处理 udii udcon上下文中的输入文档。在这项工作中,我们引入了控制知识(CK)的概念,该概念代表应用程序的域内存,并使用它来验证提取的知识。学习基于同一条信息在不同文档中的出现次数。通过将提取的文本的含义与CK中的信息进行比较,并使用提议的数据库表Verifiability_Tab,我们在注释的上下文中引入了可验证性的概念。我们使用语言概念“主题角色”来调查和识别文本文档中单词的正确含义,这有助于正确提取关系。使用的动词词典包含每个动词的自变量结构以及自变量的主题结构。我们还引入了一种新方法来对联合语句进行分块,并标识所产生子句的缺失主题。我们使用动词的语义类,将动词列表与本体中的单个属性相关联,这有助于消除输入文本中的动词的歧义,以实现更好的信息提取和注释。因此,我们对带注释的文档或有时称为“智能文档”的提议提出以下定义。“智能文档”是清楚表达其用于人类使用和软件自动化的语法和语义的文档。自动生成的带注释文档的质量以及知识库中自动提取的信息的质量。我们在使用语义Web udiii udtechnology领域的方法为各种应用程序领域带来了新的机遇。电子学习应用程序可以大大改善并变得更加有效。

著录项

  • 作者

    Hatem Muna Salman;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号