首页> 外文期刊>Image Processing, IEEE Transactions on >Fast Semantic Diffusion for Large-Scale Context-Based Image and Video Annotation
【24h】

Fast Semantic Diffusion for Large-Scale Context-Based Image and Video Annotation

机译:大规模基于上下文的图像和视频注释的快速语义扩散

获取原文
获取原文并翻译 | 示例

摘要

Exploring context information for visual recognition has recently received significant research attention. This paper proposes a novel and highly efficient approach, which is named semantic diffusion, to utilize semantic context for large-scale image and video annotation. Starting from the initial annotation of a large number of semantic concepts (categories), obtained by either machine learning or manual tagging, the proposed approach refines the results using a graph diffusion technique, which recovers the consistency and smoothness of the annotations over a semantic graph. Different from the existing graph-based learning methods that model relations among data samples, the semantic graph captures context by treating the concepts as nodes and the concept affinities as the weights of edges. In particular, our approach is capable of simultaneously improving annotation accuracy and adapting the concept affinities to new test data. The adaptation provides a means to handle domain change between training and test data, which often occurs in practice. Extensive experiments are conducted to improve concept annotation results using Flickr images and TV program videos. Results show consistent and significant performance gain (10 $+%$ on both image and video data sets). Source codes of the proposed algorithms are available online.
机译:探索用于视觉识别的上下文信息近来受到了重要的研究关注。本文提出一种新颖且高效的方法,称为语义扩散,以利用语义上下文进行大规模图像和视频注释。从通过机器学习或手动标记获得的大量语义概念(类别)的初始注释开始,所提出的方法使用图扩散技术对结果进行细化,该方法可恢复语义图上注释的一致性和平滑性。与现有的基于模型的数据样本之间的关系图学习方法不同,语义图通过将概念视为节点,将概念亲和力作为边缘权重来捕获上下文。尤其是,我们的方法能够同时提高注释的准确性,并使概念相似性适应新的测试数据。改编提供了一种手段来处理训练数据和测试数据之间的域更改,这在实践中经常发生。使用Flickr图像和电视节目视频进行了广泛的实验以改善概念注释结果。结果显示出一致且显着的性能提升(图像和视频数据集均达到10 $ +%$)。所提出算法的源代码可在线获得。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号