首页> 外文期刊>Engineering Applications of Artificial Intelligence >Improved K2 algorithm for Bayesian network structure learning
【24h】

Improved K2 algorithm for Bayesian network structure learning

机译:贝叶斯网络结构学习的改进K2算法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we study the problem of learning the structure of Bayesian networks from data, which takes a dataset and outputs a directed acyclic graph. This problem is known to be NP-hard. Almost most of the existing algorithms for structure learning can be classified into three categories: constraint-based, score-based, and hybrid methods. The K2 algorithm, as a score-based algorithm, takes a random order of variables as input and its efficiency is strongly dependent on this ordering. Incorrect order of variables can lead to learning an incorrect structure. Therefore, the main challenge of this algorithm is strongly dependency of output quality on the initial order of variables. The main contribution of this paper is to derive a significant order of variables from the given dataset. Also, one of the significant challenges of structure learning is to find a practical structure learning approach to learn an optimal structure from complex and high-dimensional datasets in a reasonable time. We propose a new fast and straightforward algorithm for addressing this problem in a reasonable time. The proposed algorithm is based on an ordering by extracting strongly connected components of the graph built from data. We reduce the super-exponential search space of structures to the smaller space of nodes ordering. We evaluated the proposed algorithm using some standard benchmark datasets and compare the results with the results obtained from some state of the art algorithms. Finally, we show that the proposed algorithm is competitive with some algorithms for structure learning.
机译:在本文中,我们研究了从数据中学习贝叶斯网络结构的问题,该数据需要一个数据集并输出一个有向无环图。已知此问题是NP难题。几乎所有现有的用于结构学习的算法都可以分为三类:基于约束的,基于得分的和混合方法。作为基于分数的算法,K2算法采用变量的随机顺序作为输入,并且其效率在很大程度上取决于此顺序。不正确的变量顺序可能导致学习不正确的结构。因此,该算法的主要挑战是输出质量强烈依赖于变量的初始顺序。本文的主要贡献是从给定的数据集中得出变量的重要顺序。同样,结构学习的重大挑战之一是找到一种实用的结构学习方法,以在合理的时间内从复杂的高维数据集中学习最佳结构。我们提出了一种新的快速而直接的算法,可以在合理的时间内解决这个问题。所提出的算法是基于排序的,该排序是从数据中提取图形的强连接组件。我们将结构的超指数搜索空间减少到节点排序的较小空间。我们使用一些标准基准数据集对提出的算法进行了评估,并将结果与​​从某些最新算法中获得的结果进行了比较。最后,我们证明了该算法与某些结构学习算法具有竞争性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号