首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Improving Bayesian Network Structure Learning with Mutual Information-Based Node Ordering in the K2 Algorithm
【24h】

Improving Bayesian Network Structure Learning with Mutual Information-Based Node Ordering in the K2 Algorithm

机译:K2算法中基于互信息的节点排序改进贝叶斯网络结构学习

获取原文
获取原文并翻译 | 示例

摘要

Structure learning of Bayesian networks is a well-researched but computationally hard task. We present an algorithm that integrates an information theory-based approach and a scoring function-based approach for learning structures of Bayesian networks. Our algorithm also makes use of basic Bayesian network concepts like d-separation and Markov independence. We show that the proposed algorithm is capable of handling networks with a large number of variables. We present the applicability of the proposed algorithm on four standard network datasets and also compare its performance and computational efficiency with other standard structure learning methods. The experimental results show that our method can efficiently and accurately identify complex network structures from data.
机译:贝叶斯网络的结构学习是一项经过充分研究但计算困难的任务。我们提出了一种算法,该算法集成了基于信息论的方法和基于得分函数的方法,用于贝叶斯网络的学习结构。我们的算法还利用了基本的贝叶斯网络概念,例如d分离和Markov独立性。我们证明了所提出的算法能够处理具有大量变量的网络。我们介绍了该算法在四个标准网络数据集上的适用性,并将其性能和计算效率与其他标准结构学习方法进行了比较。实验结果表明,该方法可以有效,准确地从数据中识别出复杂的网络结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号