首页> 外文期刊>Engineering Applications of Artificial Intelligence >A robust neural network approximation-based prescribed performance output-feedback controller for autonomous underwater vehicles with actuators saturation
【24h】

A robust neural network approximation-based prescribed performance output-feedback controller for autonomous underwater vehicles with actuators saturation

机译:基于鲁棒神经网络逼近的规定性能输出反馈控制器,用于执行器饱和的自动水下航行器

获取原文
获取原文并翻译 | 示例

摘要

A robust neural network approximation-based output-feedback tracking controller is proposed for autonomous underwater vehicles (AUVs) in six degrees-of-freedom in this paper. The prescribed performance technique is employed to obtain some pre-defined maximum overshoot/undershoot, convergence speed and ultimate tracking accuracy for the tracking errors. A high-gain observer is used to approximate unavailable velocity vector which is crucial to design the output-feedback controller. A robust multi-layer neural network and adaptive robust techniques are combined to simultaneously compensate for the unmodeled dynamics, system nonlinearities, exogenous kinematic and dynamic disturbances, and reduce the risk of the actuator saturation. Then, the uniform ultimate boundedness stability of the closed-loop control system is proved via a Lyapunov-based stability synthesis. It is demonstrated that the posture tracking errors converge to a vicinity of the origin with a guaranteed prescribed performance during the tracking mission without velocity measurements. Finally, simulation results with a comparative study verify the theoretical findings.
机译:本文针对六自由度水下航行器(AUV),提出了一种基于鲁棒神经网络逼近的输出反馈跟踪控制器。采用规定的性能技术来获得一些预定义的最大过冲/下冲,收敛速度和跟踪误差的最终跟踪精度。高增益观察器用于近似不可用的速度矢量,这对于设计输出反馈控制器至关重要。强大的多层神经网络和自适应鲁棒技术相结合,可以同时补偿未建模的动力学,系统非线性,外源运动和动态干扰,并降低执行器饱和的风险。然后,通过基于李雅普诺夫的稳定性综合证明了闭环控制系统的一致极限有界稳定性。结果表明,在没有速度测量的情况下,跟踪任务期间姿态跟踪误差以保证的规定性能收敛到原点附近。最后,通过比较研究的仿真结果验证了理论发现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号