首页> 外文期刊>Engineering Applications of Artificial Intelligence >Analyze, Sense, Preprocess, Predict, Implement, and Deploy (ASPPID): An incremental methodology based on data analytics for cost-efficiently monitoring the industry 4.0
【24h】

Analyze, Sense, Preprocess, Predict, Implement, and Deploy (ASPPID): An incremental methodology based on data analytics for cost-efficiently monitoring the industry 4.0

机译:分析,感知,预处理,预测,实施和部署(ASPPID):一种基于数据分析的增量方法,可经济高效地监控行业4.0

获取原文
获取原文并翻译 | 示例

摘要

Industry 4.0 is revolutionizing decision making processes within the manufacturing industry. Among the technological portfolio enabling this revolution, the late literature has capitalized on the potential of data analytics for improving the production cycle at different stages, from resource provisioning to planning, delivery and storage. However, such a promising role of data analytics has been so far explored without a proper, quantitative inspection of the cost-improvement trade-off, nor has the process of acquiring sensors and extracting valuable information from their captured data formalized in a series of methodological steps. This paper introduces the Analyze, Sense, Preprocess, Predict, Implement and Deploy (ASPPID) methodology, an iterative decision workflow that spans from the acquisition of sensing equipment to the quantitative assessment of the contribution of their captured data to enhance the production step under focus. By placing the data scientist at the core of the workflow, this methodology helps improvement teams make informed decisions about which parts of the process need to be sensed, and how to exploit this information towards a verifiable improvement of the production cycle. The implementation of this methodology is exemplified in a real use case within the automotive industry, where the detection of defects in an annealing process can be modeled as a classification problem over a highly imbalanced dataset. Results obtained after applying the proposed ASPPID methodology show that the scrap ratio is reduced by sensing the correct part of the process at minimal investment costs, thus highlighting the crucial role of the data scientist in the management team of manufacturing plants.
机译:工业4.0正在彻底改变制造业的决策过程。在促成这场革命的技术组合中,最近的文献充分利用了数据分析的潜力来改善从资源供应到计划,交付和存储的不同阶段的生产周期。但是,到目前为止,在没有适当,定量地检查成本提高的折衷方案的情况下,尚未探索数据分析的这种有希望的作用,也没有通过一系列方法来正式确定传感器的获取过程以及从捕获的数据中提取有价值的信息的过程。脚步。本文介绍了分析,感知,预处理,预测,实施和部署(ASPPID)方法,这是一种迭代决策工作流程,其范围从获取传感设备到对捕获数据的贡献进行定量评估,以增强重点生产步骤。 。通过将数据科学家置于工作流的核心,这种方法可以帮助改进团队做出明智的决策,以决定需要感知流程的哪些部分,以及如何利用这些信息来对生产周期进行可验证的改进。该方法的实现以汽车行业的实际用例为例,其中退火过程中缺陷的检测可以建模为高度不平衡数据集上的分类问题。应用建议的ASPPID方法后​​获得的结果表明,通过以最小的投资成本检测过程的正确部分,可以降低废品率,从而突出了数据科学家在制造工厂管理团队中的关键作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号