首页> 外文期刊>Engineering Applications of Artificial Intelligence >Multiple incipient fault diagnosis in three-phase electrical systems using multivariate statistical signal processing
【24h】

Multiple incipient fault diagnosis in three-phase electrical systems using multivariate statistical signal processing

机译:使用多元统计信号处理的三相电气系统多发故障诊断

获取原文
获取原文并翻译 | 示例

摘要

This paper presents and evaluates a methodology to detect and diagnose single or multiple faults at their earliest stage in electrical systems. The faults affect the gain, the offset and the phase shifting of the output currents. Following the general Fault Detection and Diagnosis process, the methodology is based on data driven approach for modeling the currents in the time domain, pre-processing with the Park transform and univariate statistical feature extraction and analysis.In the case of incipient faults, the Park transformed currents are more sensitive. Therefore we use their Cumulated Sum (CUSUM) (CUSUM mean or CUSUM variance) for the fault detection. Within the incipient fault ranges (= 10%) and a threshold set to have zero false alarm rate, intensive simulations show that these features successfully detect the fault(s) with a probability of miss detection around 5%.The classification of the seven fault classes that have been identified (3 single and 4 multiple) is successfully done with Linear Discriminant Analysis and Support Vector Machines (SVM) when data is linearly separable or kernel-based SVM when data is non linearly separable. The simulation results show that the misclassification errors are lower than 3%.For the fault estimation, the slope of the CUSUM decision has been identified as a relevant feature. For the different faults (single or multiple), from the evolution of the slope along with the fault severity, an analytical model has been derived. The inversion of this model allows an accurate estimation of the fault level.
机译:本文提出并评估了一种在电气系统中最早检测和诊断单个或多个故障的方法。故障会影响输出电流的增益,失调和相移。遵循一般的故障检测和诊断过程,该方法基于数​​据驱动方法,用于在时域中建模电流,使用Park变换进行预处理以及单变量统计特征提取和分析。变换后的电流更加敏感。因此,我们将其累积总和(CUSUM)(CUSUM平均值或CUSUM方差)用于故障检测。在初期故障范围(<= 10%)和设置为零误报警率的阈值范围内,深入的仿真表明,这些功能可以成功检测出故障,漏检的可能性约为5%。七种分类当数据是线性可分离的时,使用线性判别分析和支持向量机(SVM)成功完成已识别的故障类别(3个单一和4个多个),而当数据不可线性分离时,则成功地基于故障发生的基于内核的SVM。仿真结果表明,误分类误差小于3%。对于故障估计,CUSUM决策的斜率已被确定为相关特征。对于不同的断层(单个或多个),从坡度的演变以及断层的严重程度,得出了一个解析模型。该模型的反演可以准确估计故障水平。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号