首页> 外文期刊>Engineering analysis with boundary elements >A volumetric integral radial basis function method for time-dependent partial differential equations. I. Formulation
【24h】

A volumetric integral radial basis function method for time-dependent partial differential equations. I. Formulation

机译:基于时间的偏微分方程的体积积分径向基函数方法。一,配方

获取原文
获取原文并翻译 | 示例

摘要

A strictly conservative volume integral formulation of the time dependent conservation equations in terms of meshless radial basis functions (RBFs) is presented. Rotational and translational transformations are considered that simplify the partial differential equations (PDEs) to be solved. As a result, the solutions that are represented at a finite sample of knots, x is an element ofOmegapartial derivativeOmega subset of R-d, are permitted to move as the system of equations evolves in time. Knots are inserted, deleted, or rearranged in such a manner to conserve the extensive physical quantities of mass, momentum components, and total energy.Our study consists of the following parts:(A) Local rotational and Galilean translational transformations can be obtained to reduce the conservation equations into steady-state forms for the inviscid Euler equations or Navier-Stokes equations.(B) The entire set of PDEs are transformed into the method of lines approach yielding a set of coupled ordinary differential equations whose homogeneous solution is exact in time.(C) The spatial components are approximated by expansions of meshless RBFs; each individual RBF is volumetrically integrated at one of the sampling knots x(i), yielding a collocation formulation of the method of lines structure of the ODEs.(D) Because the volume integrated RBFs increase more rapidly away from the data center than the commonly used RBFs, we use a higher order preconditioner to counter-act the ill-conditioning problem. Domain decomposition is used over each piecewise continuous subdomain. (C) 2004 Published by Elsevier Ltd.
机译:提出了基于无网格径向基函数(RBF)的时间依赖守恒方程的严格保守的体积积分公式。旋转和平移变换被认为简化了要求解的偏微分方程(PDE)。结果,以结的有限样本表示的解x是R-d的Ω偏导数Ω子集的元素,被允许随着方程组的时间演化而移动。结的插入,删除或重新排列方式以节省大量物理量的质量,动量分量和总能量。我们的研究包括以下部分:(A)可以获得局部旋转和平移和伽利略平移变换,以减少(B)将整组PDE转换为线法,从而生成一组耦合的常微分方程,其齐次解在时间上是精确的;将守恒方程转化为稳态形式以用于无粘性的Euler方程或Navier-Stokes方程。 (C)通过无网格RBF的展开来近似空间分量;每个单独的RBF在一个采样结点x(i)上进行体积积分,从而生成ODE线结构方法的搭配公式。(D)因为体积积分的RBF远离数据中心的增长比通常更快如果使用RBF,我们将使用更高阶的预处理器来抵消不良条件问题。在每个分段连续子域上使用域分解。 (C)2004由Elsevier Ltd.出版

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号