首页> 外文期刊>Engineering analysis with boundary elements >Assessment of global and local meshless methods based on collocation with radial basis functions for parabolic partial differential equations in three dimensions
【24h】

Assessment of global and local meshless methods based on collocation with radial basis functions for parabolic partial differential equations in three dimensions

机译:基于径向基函数搭配的全局和局部无网格方法对三维抛物型偏微分方程的评估

获取原文
获取原文并翻译 | 示例

摘要

A comparison of the performance of the global and the local radial basis function collocation meshless methods for three dimensional parabolic partial differential equations is performed in the present paper. The methods are structured with multiquadrics radial basis functions. The time-stepping is performed in a fully explicit, fully implicit and Crank-Nicolson ways. Uniform and non-uniform node arrangements have been used. A three-dimensional diffusion-reaction equation is used for testing with the Dirichlet and mixed Dirichlet-Neumann boundary conditions. The global methods result in discretization matrices with the number of unknowns equal to the number of the nodes. The local methods are in the present paper based on seven-noded influence domains, and reduce to discretization matrices with seven unknowns for each node in case of the explicit methods or a sparse matrix with the dimension of the number of the nodes and seven non-zero row entries in case of the implicit method. The performance of the methods is assessed in terms of accuracy and efficiency. The outcome of the comparison is as follows. The local methods show superior efficiency and accuracy, especially for the problems with Dirichlet boundary conditions. Global methods are efficient and accurate only in cases with small amount of nodes. For large amount of nodes, they become inefficient and run into ill-conditioning problems. Local explicit method is very accurate, however, sensitive to the node position distribution, and becomes sensitive to the shape parameter of the radial basis functions when the mixed boundary conditions are used. Performance of the local implicit method is comparatively better than the others when a larger number of nodes and mixed boundary conditions are used. The paper represents an extension of our recently made similar study in two dimensions.
机译:本文对三维抛物型偏微分方程的全局和局部径向基函数搭配无网格方法的性能进行了比较。该方法由多二次径向基函数构成。时间步进以完全显式,完全隐式和Crank-Nicolson的方式执行。已经使用了统一和非统一的节点安排。三维扩散反应方程用于在Dirichlet和混合Dirichlet-Neumann边界条件下进行测试。全局方法导致离散化矩阵,其未知数等于节点数。本文中的局部方法基于七个节点的影响域,在采用显式方法的情况下或每个节点数目为维而稀疏矩阵为七个且非节点为七个的情况下,简化为每个节点具有七个未知数的离散化矩阵。如果是隐式方法,则为零行条目。该方法的性能根据准确性和效率进行评估。比较的结果如下。局部方法显示出卓越的效率和准确性,尤其是对于Dirichlet边界条件的问题。全局方法仅在节点数量少的情况下才有效且准确。对于大量节点,它们变得效率低下,并遇到状况不佳的问题。但是,局部显式方法非常精确,对节点位置分布敏感,并且在使用混合边界条件时对径向基函数的形状参数敏感。当使用大量节点和混合边界条件时,局部隐式方法的性能相对优于其他方法。本文代表了我们最近在两个方面进行的类似研究的扩展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号