首页> 外文期刊>Engineering analysis with boundary elements >Boundary integral―differential equations and boundary element method for interfacial cracks in three-dimensional piezoelectric media
【24h】

Boundary integral―differential equations and boundary element method for interfacial cracks in three-dimensional piezoelectric media

机译:三维压电介质中界面裂纹的边界积分-微分方程和边界元方法

获取原文
获取原文并翻译 | 示例

摘要

Using the method of Ding et al. [Int. J. Solids Struct. 34 (1997) 3041], the fundamental solutions for three-dimensional two-phase transversely isotropic piezoelectric media are re-derived. Based on the fundamental solutions, the displacements and the electric potential at any point for an internal crack parallel to the interface in a two-phase transversely isotropic piezoelectric medium are expressed in terms of the displacement and electric potential discontinuities across the crack surfaces. The hyper-singular boundary integral-differential equations of the displacement and electric potential discontinuities are obtained for arbitrarily shaped planar interfacial cracks in three-dimensional two-phase transversely isotropic piezoelectric media. A boundary element formulation to solve the boundary integral―differential equations is presented. Numerical results of stress and electric displacement intensity factors and energy release rate of penny shaped and elliptical cracks are presented to illustrate the application, accuracy and efficiency of the proposed method in analyzing interfacial cracks in three―dimensional transversely isotropic piezoelectric bimaterials.
机译:使用丁等人的方法。 [Int。 J.固体结构。 34(1997)3041],重新推导了三维两相横向各向同性压电介质的基本解。基于基本解决方案,两相横向各向同性压电介质中平行于界面的内部裂纹在任意点的位移和电势用裂纹表面的位移和电势不连续性表示。对于三维两相横向各向同性压电介质中任意形状的平面界面裂纹,获得了位移和电势不连续性的超奇异边界积分-微分方程。提出了求解边界积分微分方程的边界元公式。给出了应力和电位移强度因子以及便士形和椭圆形裂纹的能量释放率的数值结果,以说明所提出的方法在分析三维横观各向同性压电双材料界面裂纹中的应用,准确性和效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号