首页> 外文期刊>Engineering analysis with boundary elements >Mechanical quadrature methods and their splitting extrapolations for solving boundary integral equations of axisymmetric Laplace mixed boundary value problems
【24h】

Mechanical quadrature methods and their splitting extrapolations for solving boundary integral equations of axisymmetric Laplace mixed boundary value problems

机译:求解轴对称拉普拉斯混合边值问题的边界积分方程的机械正交方法及其分裂外推法

获取原文
获取原文并翻译 | 示例

摘要

The mechanical quadrature methods (MQM) and splitting extrapolation methods (SEM) are applied to the boundary integral equations (BIE) of axisymmetric mixed boundary value problems governed by Laplace's equation. By ring potential theory, the double integral equations of axisymmetric Laplace problems can be converted into the single integral equations. For solving the BIE, the MQM based on the quadrature rules for computing the singular periodic functions are presented, which possesses a high order accuracy O(h(0)(3)) and low computing complexities. Moreover, using the SEM based on the multi-parameter asymptotic error expansion, we cannot only improve the accuracy order of approximation, but also give a posteriori error estimate. Several numerical examples show that the accuracy order of approximation is very high, and the SEM and a posteriori error estimate are also very effective. circle star 2006 Elsevier Ltd. All rights reserved.
机译:将机械正交方法(MQM)和分裂外推方法(SEM)应用于由Laplace方程控制的轴对称混合边值问题的边界积分方程(BIE)。通过环势理论,可以将轴对称拉普拉斯问题的双积分方程转换为单积分方程。为了解决BIE,提出了一种基于正交规则的MQM,用于计算奇异周期函数,该算法具有高阶精度O(h(0)(3)),计算复杂度低。此外,使用基于多参数渐近误差扩展的SEM,我们不仅可以提高近似的精度等级,而且可以给出后验误差估计。几个数值例子表明,近似的精度等级非常高,并且SEM和后验误差估计也非常有效。圈星2006 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号