首页> 外文期刊>Engineering analysis with boundary elements >Advanced quadrature methods and splitting extrapolation algorithms for first kind boundary integral equations of Laplace's equation with discontinuity solutions
【24h】

Advanced quadrature methods and splitting extrapolation algorithms for first kind boundary integral equations of Laplace's equation with discontinuity solutions

机译:具有不连续解的Laplace方程的第一类边界积分方程的高级积分方法和分解外推算法

获取原文
获取原文并翻译 | 示例

摘要

The Laplace equation can be transformed to the first kind boundary integral equations (BIEs), and the corner and discontinuity singularity of Laplace's equation can be studied by the open arcs of the BIEs. For the first kind BIEs, there exist the Galerkin method (GM) and the collocation method (CM); but they suffer in low convergence. The advanced (i.e., the mechanical) quadrature methods (AQMs) and the splitting extrapolation methods (SEMs) originated in [16,17] are proposed in Huang et al. [15] for first kind BIEs with open arcs, to achieve O(h~3) or even O(h~5) convergence, and the excellent stability with Cond. = O(h~1), where h is the uniform meshspacing, accompanied with the strict analysis. Moreover, the algorithms of AQMs and the SEMs are simple without any integration computation. Hence the AQMs and the SEMs are superior to the existing methods, such as GM and CM. A challenging discontinuity model of Laplace's equation is proposed in Li et al. [20], and the collocation Trefftz method (CTM) is used to give highly accurate solutions. For the AQMs and the SEMs, the strict theoretical analysis is given in [15], and the discontinuity model [20] is dealt with in this paper, to also achieve highly accurate solutions. The numerical solutions in this paper display that the AQMs and the SEMs are significant not only to the first kind BIEs with the open arc singularity, but also to Laplace's equation with highly strong singularity such as the discontinuity of solutions. Moreover, the link of the first kind BIEs with open arcs and the Laplace equation with discontinuity solutions are explored clearly, to display the significance of the proposed algorithms; this paper strengthens the first kind BIEs and its engineering applications.
机译:可以将拉普拉斯方程转换为第一类边界积分方程(BIE),并且可以通过BIE的开弧研究拉普拉斯方程的拐角和不连续奇异性。对于第一类BIE,存在Galerkin方法(GM)和并置方法(CM)。但它们的收敛性较低。 Huang等[16,17]提出了先进的(即机械的)正交方法(AQM)和分裂外推方法(SEM)。 [15]对于具有开弧的第一类BIE,要实现O(h〜3)甚至O(h〜5)收敛,以及具有Cond的出色稳定性。 = O(h〜1),其中h是均匀网格间距,并附带严格的分析。而且,AQM和SEM的算法很简单,无需任何积分计算。因此,AQM和SEM优于GM和CM等现有方法。 Li等人提出了具有挑战性的拉普拉斯方程的不连续性模型。 [20],并用Trefftz搭配方法(CTM)提供了高度准确的解决方案。对于AQM和SEM,在[15]中给出了严格的理论分析,并在本文中处理了间断模型[20],以实现高度精确的解决方案。本文的数值解表明,AQM和SEM不仅对具有开弧奇点的第一类BIE有意义,而且对具有极强奇点的Laplace方程(例如解的不连续性)也具有重要意义。此外,清晰地探讨了带开放弧的第一类BIE和具有不连续性解的Laplace方程之间的联系,以显示所提出算法的重要性。本文加强了第一类BIE及其工程应用。

著录项

  • 来源
    《Engineering analysis with boundary elements》 |2010年第12期|p.1003-1008|共6页
  • 作者单位

    College of Applied Mathematics, University of Electronic & Science Technology of China, ChengDu, China;

    rnDepartment of Applied Mathematics, National Sun Yat-sen University, Kaohsiung, Taiwan Department of Computer Science and Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan Department of Applied Mathematics, Chung Hua University, Hsin-Chu, Taiwan Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung, Taiwan;

    rnDepartment of Naval Architecture, National Kaohsiung Marine University, Taiwan;

    rnDepartment of Civil Engineering, University of Mississippi, 203 Carrier Hall, University, MS 38677, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    laplace's equation; singularity; discontinuity solutions; first-kind boundary integral equation; advanced quadrature method; splitting extrapolation;

    机译:拉普拉斯方程奇点不连续性解决方案;第一类边界积分方程;高级正交方法;分裂外推;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号