首页> 外文期刊>Engineering analysis with boundary elements >Three dimensional static and dynamic analysis of thick functionally graded plates by the meshless local Petrov-Galerkin (MLPG) method
【24h】

Three dimensional static and dynamic analysis of thick functionally graded plates by the meshless local Petrov-Galerkin (MLPG) method

机译:无网格局部Petrov-Galerkin(MLPG)方法对厚功能梯度板的三维静态和动态分析

获取原文
获取原文并翻译 | 示例

摘要

In this paper, three dimensional (3D) static and dynamic analysis of thick functionally graded plates based on the Meshless Local Petrov-Galerkin (MLPG) is presented. Using the kinematics of a three-dimensional continuum, the local weak form of the equilibrium equations is derived. A weak formulation for the set of governing equations is transformed into local integral equations on local sub-domains using a Heaviside step function as test function. In this case, governing equations corresponding to the stiffness matrix do not involve any domain integration or singular integrals. Nodal points are distributed in the 3D analyzed domain and each node is surrounded by a cubic sub-domain to which a local integral equation is applied. The meshless approximation based on the three-dimensional Moving Least-Square (MLS) is employed as shape function to approximate the field variable of scattered nodes in the problem domain. The Newmark time integration method is used to solve the system of coupled second-order ODEs. Effective material properties of the plate, made of two isotropic constituents with volume fractions varying only in the thickness direction, are computed using the Mori-Tanaka homogenization technique. Numerical examples for solving the static and dynamic response of elastic thick functionally graded plates are demonstrated. As a result, the distributions of the deflection and stresses through the plate thickness are presented for different material gradients and boundary conditions. The effects of the volume fractions of the constituents on the centroidal deflection are also investigated. The numerical efficiency of the proposed meshless method is illustrated by the comparison of results obtained from previous literatures.
机译:本文提出了基于无网格局部Petrov-Galerkin(MLPG)的厚功能梯度板的三维(3D)静态和动态分析。利用三维连续体的运动学,推导出平衡方程的局部弱形式。使用Heaviside阶跃函数作为检验函数,将控制方程组的弱公式转换为局部子域上的局部积分方程。在这种情况下,对应于刚度矩阵的控制方程不涉及任何域积分​​或奇异积分。节点分布在3D分析域中,每个节点都被一个立方子域所包围,在该子域中应用了局部积分方程。基于三维移动最小二乘法(MLS)的无网格近似被用作形状函数,以近似求解问题域中分散节点的场变量。 Newmark时间积分方法用于求解耦合二阶ODE的系统。使用Mori-Tanaka均质化技术计算由两种各向同性成分组成的板的有效材料性能,其中体积分数仅在厚度方向上变化。给出了求解弹性厚功能梯度板静,动态响应的数值例子。结果,针对不同的材料梯度和边界条件,给出了贯穿板厚度的挠度和应力分布。还研究了成分的体积分数对质心挠度的影响。通过比较先前文献的结果,说明了所提出的无网格方法的数值效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号