首页> 外文期刊>Engineering analysis with boundary elements >Meshless local Petrov-Galerkin method for coupled thermoelasticity analysis of a functionally graded thick hollow cylinder
【24h】

Meshless local Petrov-Galerkin method for coupled thermoelasticity analysis of a functionally graded thick hollow cylinder

机译:无网格局部Petrov-Galerkin方法用于功能梯度厚空心圆柱体的热弹性耦合分析

获取原文
获取原文并翻译 | 示例

摘要

In this article, coupled thermoelasticity (without energy dissipation) based on Green-Naghdi model is applied to functionally graded (FG) thick hollow cylinder. The meshless local Petrov-Galerkin method is developed to solve the boundary value problem. The Newmark finite difference method is used to treat the time dependence of the variables for transient problems. The FG cylinder is considered to be under axisymmetric and plane strain conditions and bounding surfaces of cylinder to be under thermal shock loading. The mechanical properties of FG cylinder are assumed to vary across thickness of cylinder in terms of volume fraction as nonlinear function. A weak formulation for the set of governing equations is transformed into local integral equations on local subdomains by using a Heaviside test function. Nodal points are regularly distributed along the radius of the cylinder and each node is surrounded by a uni-directional subdomain to which a local integral equation is applied. The Green-Naghdi coupled thermoelasticity equations are valid in each isotropic subdomain. The temperature and radial displacement distributions are obtained for some grading patterns of FGM at various time instants. The propagation of thermal and elastic waves is discussed in details. The presented method shows high capability and efficiency for coupled thermoelasticity problems.
机译:在本文中,将基于Green-Naghdi模型的耦合热弹性(不耗能)应用于功能梯度(FG)厚空心圆柱体。提出了无网格局部Petrov-Galerkin方法来解决边值问题。 Newmark有限差分法用于处理瞬态问题的变量的时间依赖性。 FG圆柱体被认为处于轴对称和平面应变条件下,并且圆柱体的边界表面处于热冲击载荷下。假定FG圆柱的机械性能在圆柱厚度上随体积分数变化(作为非线性函数)。通过使用Heaviside测试函数,将一组控制方程的弱公式转换为局部子域上的局部积分方程。节点沿着圆柱的半径规则地分布,并且每个节点被单向子域包围,在该子域上应用了局部积分方程。 Green-Naghdi耦合热弹性方程在各向同性子域中有效。获得了在不同时刻FGM的某些分级模式的温度和径向位移分布。将详细讨论热波和弹性波的传播。提出的方法显示出解决热弹性问题的高能力和高效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号