首页> 外文期刊>Engineering analysis with boundary elements >Truly meshless localized type techniques for the steady-state heat conduction problems for isotropic and functionally graded materials
【24h】

Truly meshless localized type techniques for the steady-state heat conduction problems for isotropic and functionally graded materials

机译:用于各向同性和功能梯度材料的稳态热传导问题的真正无网格局部类型技术

获取原文
获取原文并翻译 | 示例

摘要

A numerical solution of steady-state heat conduction problems is obtained using the strong form meshless point collocation (MPC) method. The approximation of the field variables is performed using the Moving Least Squares (MLS) and the local form of the multiquadrics Radial Basis Functions (LRBF). The accuracy and the efficiency of the MPC schemes (with MLS and LRBF approximations) are investigated through variation (i) of the nodal distribution type used, i.e. regular or irregular, ensuring the so-called positivity conditions, (ii) of the number of nodes in the total spatial domain (TD), and (iii) of the number of nodes in the support domain (SD). Numerical experiments are performed on representative case studies of increasing complexity, such as, (a) a regular geometry with a constant conductivity and uniformly distributed heat source, (b) a regular geometry with a spatially varying conductivity and non-uniformly distributed heat source, and (c) an irregular geometry in case of insulation of vapor transport tubes, as well. Steady-state boundary conditions of the Dirichlet-, Neumann-, or Robin-type are assumed. The results are compared with those calculated by the Finite Element Method with an in-house code, as well as with analytical solutions and other literature data. Thus, the accuracy and the efficiency of the method are demonstrated in all cases studied.
机译:使用强形式无网格点配置(MPC)方法获得了稳态导热问题的数值解。使用移动最小二乘(MLS)和多二次方径向基函数(LRBF)的局部形式执行字段变量的近似。通过(i)使用的节点分布类型的变化(即规则的或不规则的)来确定MPC方案(具有MLS和LRBF近似值)的准确性和效率,以确保所谓的正性条件;总空间域(TD)中的节点数,以及(iii)支持域(SD)中的节点数。在具有越来越高的复杂性的代表性案例研究中进行了数值实验,例如(a)具有恒定电导率和均匀分布的热源的规则几何形状,(b)具有空间变化的电导率和不均匀分布的热源的规则几何形状, (c)在隔离蒸汽传输管的情况下,其几何形状也不规则。假设Dirichlet型,Neumann型或Robin型的稳态边界条件。将结果与使用内部代码的有限元方法计算的结果以及分析解决方案和其他文献数据进行比较。因此,在所研究的所有情况下都证明了该方法的准确性和效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号