首页> 外文期刊>Engineering analysis with boundary elements >The quasi-linear method of fundamental solution applied to non-linear wave equations
【24h】

The quasi-linear method of fundamental solution applied to non-linear wave equations

机译:非线性波动方程基本解的拟线性方法

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a new meshless method developed by combining the quasi-linear method of fundamental solution (QMFS) and the finite difference method to analyze wave equations. The method of fundamental solution (MFS) is an efficient numerical method for solution Laplace equation for both two- and three-dimensional problems. The method has also been applied for the solution of Poisson equations and transient Poisson-type equations by finding the particular solution to the non-homogeneous terms. In general, approximate particular solutions are constructed using the interpolation of the non-homogeneous terms by the radial basis functions (RBFs). The interpolation in terms of RBFs often leads to a badly conditioned problem which demands special cares. The current work suggests a linearization scheme for the non-homogeneous term in terms of the dependent variable and finite differencing in time resulting in Helmholtz-type equations whose fundamental solutions are available. Consequently, the particular solution is no longer needed and the MFS can be directly applied to the new linearized equation. The numerical examples illustrate the effectiveness of the presented method.
机译:本文提出了一种新的无网格方法,该方法结合了基本解的拟线性方法(QMFS)和有限差分法来分析波动方程。基本解法(MFS)是解决二维和三维问题的拉普拉斯方程的有效数值方法。通过找到非齐次项的特定解,该方法也已应用于泊松方程和瞬态泊松型方程的解。通常,使用径向基函数(RBF)对非齐次项进行插值来构造近似特定解。就RBF而言,插值通常会导致条件恶劣的问题,需要特别注意。当前的工作提出了非均匀项的线性化方案,该线性化方案涉及因变量和时间有限差分,从而产生了具有基本解的亥姆霍兹型方程。因此,不再需要特定的解决方案,并且MFS可以直接应用于新的线性化方程。数值例子说明了所提出方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号