首页> 外文期刊>Engineering analysis with boundary elements >A meshfree method based on the radial basis functions for solution of two-dimensional fractional evolution equation
【24h】

A meshfree method based on the radial basis functions for solution of two-dimensional fractional evolution equation

机译:基于径向基函数的无网格方法求解二维分数阶演化方程

获取原文
获取原文并翻译 | 示例

摘要

In the current work, numerical solution of a two-dimensional fractional evolution equation has been investigated by using two different aspects of strong form meshless methods. In the first method a time discretization approach and a numerical technique based on the convolution sum are employed to approximate the appearing time derivative and fractional integral operator, respectively. It has been proven analytically that the time discretization scheme is unconditionally stable. Then a meshfree collocation method based on the radial basis functions is used for solving resulting time-independent discretization problem. As the second approach, a fully Kansa's meshfree method based on the Gaussian radial basis function is formulated and well-used directly for solving the governing problem. In this technique an explicit formula to approximate the fractional integral operator is computed. The given techniques are used to solve two examples of problem. The computed approximate solutions are reported through the tables and figures, also these results are compared together and with the other available results. The presented results demonstrate the validity, efficiency and accuracy of the formulated techniques.
机译:在当前的工作中,已经通过使用强形式无网格方法的两个不同方面研究了二维分数阶演化方程的数值解。在第一种方法中,采用时间离散方法和基于卷积和的数值技术分别对出现的时间导数和分数积分算子进行近似。分析已证明时间离散方案是无条件稳定的。然后使用基于径向基函数的无网格搭配方法来解决由此产生的与时间无关的离散化问题。作为第二种方法,提出了一种完全基于高斯径向基函数的完全Kansa的无网格方法,并直接用于解决控制问题。在该技术中,计算了近似分数分数算子的显式公式。给定的技术用于解决问题的两个示例。通过表和数字报告了计算出的近似解,并将这些结果与其他可用结果进行了比较。提出的结果证明了所制定技术的有效性,效率和准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号