首页> 外文期刊>Engineering analysis with boundary elements >Second-order Taylor Expansion Boundary Element Method for the second-order wave diffraction problem
【24h】

Second-order Taylor Expansion Boundary Element Method for the second-order wave diffraction problem

机译:二阶波衍射问题的二阶泰勒展开边界元方法

获取原文
获取原文并翻译 | 示例

摘要

A new Boundary Element Method (BEM) is developed for the solution of the induced velocity at the sharp corners in the context of potential flow. This method is based on the framework of low-order direct BEM to solve the Boundary Integral Equation (BIE), which mainly applies the Taylor expansion to the dipole strength in the BIE, reserves the first-order, second-order and mixed derivatives, and finally solves the corresponding tangential derivatives with respect to the field point in the BIE to form the closed equations. So the method is named the second-order Taylor Expansion Boundary Element Method (the 2nd order TEBEM), which can accurately solve the induced velocity on the non-smooth boundary, compared with the low-order BEM (Constant panel method), and all of the singular integrals in 2nd order TEBEM can be solved analytically. Its implementation is quite easy compared with high-order BEM. The characteristics of 2nd order TEBEM are studied by various wave diffraction problems, and the results of 2nd order TEBEM are compared with the analytical solutions and other numerical results, which show satisfactory agreements.
机译:开发了一种新的边界元方法(BEM),用于求解势流情况下尖角处的感应速度。该方法基于低阶直接BEM的框架来求解边界积分方程(BIE),该边界积分方程主要将泰勒展开式应用于BIE中的偶极子强度,保留一阶,二阶和混合导数,并最终针对BIE中的场点求解相应的切向导数,以形成闭合方程。因此,该方法被称为二阶泰勒展开边界元方法(二阶TEBEM),与低阶BEM(恒面板法)相比,该方法可以精确地求解非光滑边界上的感应速度。二阶TEBEM中的奇异积分的解析可以解决。与高阶BEM相比,它的实现非常容易。通过各种波衍射问题研究了二阶TEBEM的特性,并将二阶TEBEM的结果与解析解和其他数值结果进行了比较,表明令人满意。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号