首页> 外文期刊>Engineering analysis with boundary elements >Three-dimensional thermo-elastoplastic analysis of thick functionally graded plates using the meshless local Petrov-Galerkin method
【24h】

Three-dimensional thermo-elastoplastic analysis of thick functionally graded plates using the meshless local Petrov-Galerkin method

机译:无网格局部Petrov-Galerkin方法对厚功能梯度板的三维热弹塑性分析

获取原文
获取原文并翻译 | 示例

摘要

A numerical method based on the meshless local Petrov-Galerkin (MLPG) method is presented for three-dimensional (3D) thermo-elastoplastic analysis of thick functionally graded (FG) plates subjected to combined thermal and mechanical loads. The FG plate is assumed to be made of two constituents, whose volume fractions vary continuously in the thickness direction according to a power law. All material properties are considered to be temperature dependent. The von-Mises yield criterion and isotropic strain hardening rule are employed to describe the elastoplastic behaviors of the FG plates. The weak form is derived using the 3D equilibrium equations, and then it is transformed into local integral equations on brick-shaped local sub-domains by using a Heaviside step function as the test function. The proposed approach makes it possible to distribute more nodes in the direction of the material variation to construct the shape and test functions. Consequently, more accurate solutions can be obtained easily and effectively. Several numerical examples for temperature, displacement and stress analysis of thick FG plates are presented for different material gradients and boundary conditions. The obtained results have been compared with accurate finite element results and an excellent agreement has been observed.
机译:提出了一种基于无网格局部Petrov-Galerkin(MLPG)方法的数值方法,用于对功能热梯度(FG)厚板在热和机械载荷作用下的三维(3D)热弹塑性分析。假设FG板由两种成分制成,其体积分数根据幂律在厚度方向上连续变化。所有材料特性均视温度而定。 von-Mises屈服准则和各向同性应变硬化规则用于描述FG板的弹塑性行为。使用3D平衡方程推导弱形式,然后使用Heaviside阶跃函数作为检验函数将其转换为砖形局部子域上的局部积分方程。所提出的方法使得可以在材料变化的方向上分布更多的节点以构造形状和测试功能。因此,可以容易且有效地获得更准确的解决方案。给出了针对不同材料梯度和边界条件的厚FG板温度,位移和应力分析的几个数值示例。将获得的结果与精确的有限元结果进行了比较,并观察到了极好的一致性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号