首页> 外文期刊>Engineering analysis with boundary elements >The method of fundamental solutions for solving non-linear Berger equation of thin elastic plate
【24h】

The method of fundamental solutions for solving non-linear Berger equation of thin elastic plate

机译:求解弹性薄板非线性Berger方程的基本解法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we utilized the method of fundamental solutions, which is meshless and integral-free, to analyze the non-linear Berger equation for thin elastic plate. Based on the proposed numerical scheme, the deflection can be expressed as the linear combination of the homogeneous solution and the particular solutions. The particular solution, based on the polyharmonic splines, is derived and then the spatial-dependent loading term of the Berger equation can be approximated by the polyharmonic splines. After the particular solution is obtained, the homogeneous solution, which is governed by the homogeneous partial differential equations, can be solved by the method of fundamental solutions. Several numerical examples are adopted to demonstrate the flexibility and robustness of the proposed meshless scheme, especially the irregular plate with spatial-dependent loading function. Furthermore, we also performed the convergence test for various orders of the polyharmonic splines.
机译:本文采用无网格,无积分的基本解法,分析了弹性薄板的非线性Berger方程。基于所提出的数值方案,挠度可以表示为均匀解和特定解的线性组合。导出基于多谐样条的特定解,然后可以通过多谐样条来近似Berger方程的与空间相关的载荷项。在获得特定解之后,可以通过基本解的方法来解决由齐次偏微分方程控制的齐次解。通过几个数值算例来证明所提出的无网格方案的灵活性和鲁棒性,尤其是具有空间相关载荷函数的不规则板。此外,我们还针对多阶调和样条进行了收敛性测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号