首页> 外文期刊>Applied Mathematical Modelling >Numerical solution to the deflection of thin plates using the two-dimensional Berger equation with a meshless method based on multiple-scale Pascal polynomials
【24h】

Numerical solution to the deflection of thin plates using the two-dimensional Berger equation with a meshless method based on multiple-scale Pascal polynomials

机译:基于多尺度Pascal多项式的二维无网格方法利用二维Berger方程数值求解薄板挠度

获取原文
获取原文并翻译 | 示例

摘要

In this study, we employ Pascal polynomial basis in the two-dimensional Berger equation, which is a fourth order partial differential equation with applications to thin elastic plates. The polynomial approximation method based on Pascal polynomial basis can be readily adapted to obtain the numerical solutions of partial differential equations. However, a drawback with the polynomial basis is that the resulting coefficient matrix for the problem considered may be ill-conditioned. Due to this ill-conditioned behavior, we use a multiple-scale Pascal polynomial method for the Berger equation. The ill-conditioned numbers can be mitigated using this approach. Multiple scales are established automatically by selecting the collocation points in the multiple-scale Pascal polynomial method. This method is also a meshless method because there is no requirement to establish complex grids or for numerical integration. We present the solutions of six linear and nonlinear benchmark problems obtained with the proposed method on complexly shaped domains. The results obtained demonstrate the accuracy and effectiveness of the proposed method, as well showing its stability against large noise effects. (C) 2019 Elsevier Inc. All rights reserved.
机译:在这项研究中,我们在二维Berger方程中采用Pascal多项式基础,该方程是四阶偏微分方程,适用于弹性薄板。基于帕斯卡多项式的多项式逼近方法可以很容易地适用于获得偏微分方程的数值解。但是,多项式基础的一个缺点是,所考虑问题的所得系数矩阵可能条件不佳。由于这种不良状况,我们对Berger方程使用了多尺度Pascal多项式方法。使用这种方法可以缓解病态的数字。通过在多尺度Pascal多项式方法中选择并置点,可以自动建立多尺度。该方法也是无网格方法,因为不需要建立复杂的网格或进行数值积分。我们提出了在复杂形状的域上使用该方法获得的六个线性和非线性基准问题的解决方案。获得的结果证明了该方法的准确性和有效性,并显示了其对大噪声影响的稳定性。 (C)2019 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号