首页> 外文期刊>Emerging Topics in Computing, IEEE Transactions on >Tensor-Based Multiple Clustering Approaches for Cyber-Physical-Social Applications
【24h】

Tensor-Based Multiple Clustering Approaches for Cyber-Physical-Social Applications

机译:基于卷制的网络 - 物理社交应用方法

获取原文
获取原文并翻译 | 示例

摘要

In multiple analysis tasks and personalized services, tremendous challenges in Cyber-Physical-Social Systems (CPSS) are clustering large-scale multi-source data and generating multiple distinct clusterings dependent on different applications. To address these challenges, this paper first presents two simple multiple clustering methods which can produce different clustering results according to arbitrarily selected combinations of features, one is similarity matrices-based multiple clusterings which computes the weighted average of similarity matrices for selected feature spaces, another is Euclidean distance-based multiple clusterings which fuses different feature spaces using selective weighted Euclidean distance. Furthermore, a tensor decomposition-based multiple clusterings is presented for efficiently clustering high-dimensional data, and a multi-relational attribute ranking method is further proposed to improve the clustering performance. This paper illustrates and evaluates the proposed methods on a design example and a real world data set. Experimental results show that the proposed methods can effectively cluster big data to provide enhanced knowledge extractions and services in CPSS.
机译:在多分析任务和个性化服务中,网络 - 物理社交系统(CPSS)的巨大挑战是聚类大规模多源数据,并在依赖于不同的应用程序生成多个不同的集群。为了解决这些挑战,本文首先提出了两个简单的多种聚类方法,可以根据任意选择的特征组合产生不同的聚类结果,一个是基于相似性矩阵的多个群集,其计算了所选特征空间的相似性矩阵的加权平均值是基于欧几里德距离的多个集群,其使用选择性加权欧几里德距离来融合不同的特征空间。此外,呈现了基于张量分解的多群集以有效地聚类高维数据,并且还提出了一种多关系属性排名方法来提高聚类性能。本文说明了设计示例和真实世界数据集的所提出的方法。实验结果表明,该方法可以有效地集群大数据,以提供CPS的增强知识提取和服务。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号