首页> 外文期刊>IEEE transactions on industrial informatics >Privacy-Preserving Tensor-Based Multiple Clusterings on Cloud for Industrial IoT
【24h】

Privacy-Preserving Tensor-Based Multiple Clusterings on Cloud for Industrial IoT

机译:基于隐私保留的基于卷的云云

获取原文
获取原文并翻译 | 示例

摘要

Aiming at discovering hidden different data structures in big data from different perspectives, a tensor-based multiple clustering method has been developed recently, which can be widely used in Industrial Internet of Things (IoT) to improve production and service quality. However, due to the high computational cost and huge volume of data, outsourcing computing to relatively inexpensive cloud servers can greatly save local costs, but there is a high risk of revealing user privacy. To address the above problem, a privacy-preserving tensor-based multiple clustering method on the secure hybrid cloud is proposed. The proposed scheme utilizes a homomorphic cryptosystem to encrypt object tensors and, then, employs cloud servers to completely implement multiple clustering calculation over encrypted object tensors. Furthermore, a series of related security subprotocols are proposed to support privacy-preserving tensor-based multiple clusterings. In the proposed scheme, only encryption and removing perturbation are performed on the client, which is very lightweight for users. Experimental results show that the proposed scheme is accurate and efficient when clustering objects to different groups, while no private or additional information is leaked. Moreover, when employing more cloud nodes, the scheme has high scalability; thus, it is very suitable for clustering Industrial IoT big data.
机译:旨在从不同的角度发现大数据中发现隐藏的不同数据结构,最近开发了一种张量的多聚类方法,可广泛应用于工业物联网(物联网),以提高生产和服务质量。然而,由于计算成本高,数据量大量数据,外包计算到相对便宜的云服务器可以大大节省当地成本,但揭示了用户隐私的风险很高。为了解决上述问题,提出了一种在安全混合云上保留了一个基于卷的多元群集方法。所提出的方案利用同性恋密码系统来加密对象张量,然后,采用云服务器通过加密对象张量完全实现多个聚类计算。此外,提出了一系列相关的安全子协议,以支持保留保留的基于卷的多个群集。在所提出的方案中,在客户端上仅执行加密和删除扰动,这对于用户来说非常重量轻。实验结果表明,当群体对象到不同的组时,该方案准确有效,而无私人或附加信息泄露。此外,在采用更多云节点时,该方案具有高可扩展性;因此,它非常适合聚类工业物联网大数据。

著录项

  • 来源
    《IEEE transactions on industrial informatics》 |2019年第4期|2372-2381|共10页
  • 作者单位

    Huazhong Univ Sci & Technol Sch Comp Sci & Technol Wuhan 430074 Hubei Peoples R China|Henan Univ Sch Comp & Informat Engn Kaifeng 475004 Peoples R China|Shenzhen Huazhong Univ Sci & Technol Res Inst Shenzhen 518057 Peoples R China;

    Huazhong Univ Sci & Technol Sch Comp Sci & Technol Wuhan 430074 Hubei Peoples R China|Shenzhen Huazhong Univ Sci & Technol Res Inst Shenzhen 518057 Peoples R China|St Francis Xavier Univ Dept Comp Sci Antigonish NS B2G 2W5 Canada;

    Huazhong Univ Sci & Technol Sch Comp Sci & Technol Wuhan 430074 Hubei Peoples R China|Shenzhen Huazhong Univ Sci & Technol Res Inst Shenzhen 518057 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Cloud computing; homomorphic cryptosystem; Industrial Internet of Things (IoT); multiple clusterings; privacy preserving;

    机译:云计算;同态密码系统;工业互联网(物联网);多集群;隐私保存;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号