首页> 外文期刊>Emerging and Selected Topics in Circuits and Systems, IEEE Journal on >Dynamic Bayesian Network for Unconstrained Face Recognition in Surveillance Camera Networks
【24h】

Dynamic Bayesian Network for Unconstrained Face Recognition in Surveillance Camera Networks

机译:动态贝叶斯网络用于监控摄像机网络中的无约束人脸识别

获取原文
获取原文并翻译 | 示例

摘要

The demand for robust face recognition in real-world surveillance cameras is increasing due to the needs of practical applications such as security and surveillance. Although face recognition has been studied extensively in the literature, achieving good performance in surveillance videos with unconstrained faces is inherently difficult. During the image acquisition process, the noncooperative subjects appear in arbitrary poses and resolutions in different lighting conditions, together with noise and blurriness of images. In addition, multiple cameras are usually distributed in a camera network and different cameras often capture a subject in different views. In this paper, we aim at tackling this unconstrained face recognition problem and utilizing multiple cameras to improve the recognition accuracy using a probabilistic approach. We propose a dynamic Bayesian network to incorporate the information from different cameras as well as the temporal clues from frames in a video sequence. The proposed method is tested on a public surveillance video dataset with a three-camera setup. We compare our method to different benchmark classifiers with various feature descriptors. The results demonstrate that by modeling the face in a dynamic manner the recognition performance in a multi-camera network is improved over the other classifiers with various feature descriptors and the recognition result is better than using any of the single camera.
机译:由于诸如安全性和监视之类的实际应用的需求,在现实世界的监视摄像机中对鲁棒的人脸识别的需求正在增长。尽管在文献中已经对人脸识别进行了广泛研究,但是在具有不受约束的人脸的监控视频中实现良好的性能本质上是困难的。在图像采集过程中,不合作的对象在不同的​​光照条件下会以任意姿势和分辨率出现,同时还会出现图像的噪点和模糊性。另外,通常在摄像机网络中分布有多个摄像机,并且不同的摄像机经常以不同的视角捕获对象。在本文中,我们旨在解决这种无约束的人脸识别问题,并使用多个摄像机使用概率方法来提高识别精度。我们提出了一个动态贝叶斯网络,以合并来自不同摄像机的信息以及来自视频序列帧的时间线索。所提出的方法在具有三台摄像机的公共监控视频数据集上进行了测试。我们将我们的方法与具有各种特征描述符的不同基准分类器进行比较。结果表明,通过以动态方式对面部进行建模,与具有各种特征描述符的其他分类器相比,多相机网络中的识别性能得到了改善,并且识别结果优于使用任何单个相机。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号