首页> 外文期刊>Image Processing, IEEE Transactions on >Vehicle Detection in Aerial Surveillance Using Dynamic Bayesian Networks
【24h】

Vehicle Detection in Aerial Surveillance Using Dynamic Bayesian Networks

机译:动态贝叶斯网络在空中监视中的车辆检测

获取原文
获取原文并翻译 | 示例

摘要

We present an automatic vehicle detection system for aerial surveillance in this paper. In this system, we escape from the stereotype and existing frameworks of vehicle detection in aerial surveillance, which are either region based or sliding window based. We design a pixelwise classification method for vehicle detection. The novelty lies in the fact that, in spite of performing pixelwise classification, relations among neighboring pixels in a region are preserved in the feature extraction process. We consider features including vehicle colors and local features. For vehicle color extraction, we utilize a color transform to separate vehicle colors and nonvehicle colors effectively. For edge detection, we apply moment preserving to adjust the thresholds of the Canny edge detector automatically, which increases the adaptability and the accuracy for detection in various aerial images. Afterward, a dynamic Bayesian network (DBN) is constructed for the classification purpose. We convert regional local features into quantitative observations that can be referenced when applying pixelwise classification via DBN. Experiments were conducted on a wide variety of aerial videos. The results demonstrate flexibility and good generalization abilities of the proposed method on a challenging data set with aerial surveillance images taken at different heights and under different camera angles.
机译:我们提出了一种用于空中监视的自动车辆检测系统。在该系统中,我们摆脱了基于航测的定型和现有的车辆检测框架,这些框架是基于区域或基于滑动窗口的。我们设计了一种用于车辆检测的像素分类方法。新颖之处在于,尽管进行了像素分类,但是在特征提取过程中仍保留了区域中相邻像素之间的关系。我们考虑的特征包括车辆颜色和局部特征。对于车辆颜色提取,我们利用颜色变换有效地分离了车辆颜色和非车辆颜色。对于边缘检测,我们应用保留时间来自动调整Canny边缘检测器的阈值,从而提高了在各种航空图像中检测的适应性和准确性。然后,出于分类目的,构造了动态贝叶斯网络(DBN)。我们将区域局部特征转换为定量观测值,当通过DBN应用像素级分类时可以参考该定量观测值。在各种各样的航拍视频上进行了实验。结果证明了该方法在具有挑战性的数据集上的灵活性和良好的泛化能力,该数据集具有在不同高度和不同摄像机角度下拍摄的空中监视图像。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号