首页> 外文期刊>Emerging and Selected Topics in Circuits and Systems, IEEE Journal on >Modeling and Control to Mitigate Resonant Load in Variable-Speed Wind Turbine Drivetrain
【24h】

Modeling and Control to Mitigate Resonant Load in Variable-Speed Wind Turbine Drivetrain

机译:减轻变速风力涡轮机传动系统共振负载的建模与控制

获取原文
获取原文并翻译 | 示例
           

摘要

Failure of the drivetrain components is currently listed among the most problematic failures during the operational lifetime of a wind turbine. Guaranteeing robust and reliable drivetrain designs is important to minimize the wind turbine downtime as well as to meet demand in both power quantity and quality. While aeroelastic codes are often used in the design of wind turbine controllers, the drivetrain model in such codes is limited to a few (mostly two) degrees of freedom, resulting in a restricted detail in describing its dynamic behavior and assessing the effectiveness of controllers on attenuating the drivetrain load. In the previous work, the capability of the well-known FAST aeroelastic tool for wind turbine has been enhanced through integration of a dynamic model of a drivetrain. The drivetrain model, built using the Simscape in the MATLAB/Simulink environment, is applied in this paper. The model is used to develop a power-electronics-based controller to prevent excessive drivetrain load. The controller temporarily shifts the closed-loop eigenfrequency of the drivetrain through the addition of virtual inertia, thus avoiding the resonance. Simulation results demonstrating the fidelity of the expanded drivetrain model as well as the effectiveness of the virtual inertia controller are presented.
机译:在风力涡轮机的使用寿命期间,传动系统部件的故障目前被列为最成问题的故障之一。确保鲁棒且可靠的传动系统设计对于最大程度地减少风力涡轮机的停机时间以及满足功率量和质量的需求至关重要。尽管气动弹性代码通常用于风力涡轮机控制器的设计中,但此类代码中的传动系统模型仅限于几个(大多数是两个)自由度,因此在描述其动态行为和评估控制器的有效性方面存在局限性减轻传动系统的负荷。在先前的工作中,通过集成动力传动系统的动态模型,增强了著名的FAST气动弹性工具在风力涡轮机上的功能。本文应用了在MATLAB / Simulink环境中使用Simscape构建的传动系统模型。该模型用于开发基于电力电子的控制器,以防止过度的传动系统负载。控制器通过增加虚拟惯性来暂时改变动力传动系统的闭环本征频率,从而避免共振。仿真结果表明了扩展的传动系统模型的逼真度以及虚拟惯性控制器的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号