首页> 外文期刊>Emerging and Selected Topics in Circuits and Systems, IEEE Journal on >Leveraging Stochastic Memristor Devices in Neuromorphic Hardware Systems
【24h】

Leveraging Stochastic Memristor Devices in Neuromorphic Hardware Systems

机译:在神经形态硬件系统中利用随机忆阻器设备

获取原文
获取原文并翻译 | 示例

摘要

As the fourth basic circuit element, memristor has a unique synapse-alike feature which demonstrates great potentials in neuromorphic circuit design. However, a large gap exists between the theoretical memristor characteristics and the actual device behavior. For example, though the continuous changing in resistance state is expected in neuromorphic circuit design, it is difficult to maintain arbitrary intermediate state. In addition, the stochastic switching behaviors have been widely observed in nano-scale memristor devices. In this work, we first developed a stochastic behavior model in order to facilitate the investigation on memristor-based hardware implementation. Our modeling was based on the statistical analysis of experimental data of device. By leveraging the stochastic behavior of memristors, a random number generator was proposed. We also presented a macro cell design composed of multiple parallel connecting memristors which can be successfully used in implementing the weight storage unit and the stochastic neuron. The designs of these fundamental components provide a feasible solution in memristor-based hardware implementation of neural networks.
机译:忆阻器作为第四个基本电路元件,具有独特的类似突触的功能,显示出神经形态电路设计的巨大潜力。但是,理论忆阻器特性与实际器件性能之间存在很大差距。例如,尽管在神经形态电路设计中期望电阻状态连续变化,但是难以维持任意的中间状态。另外,已经在纳米级忆阻器器件中广泛观察到了随机开关行为。在这项工作中,我们首先开发了一个随机行为模型,以便于研究基于忆阻器的硬件实现。我们的建模基于设备实验数据的统计分析。通过利用忆阻器的随机行为,提出了一个随机数发生器。我们还提出了由多个并联连接的忆阻器组成的宏单元设计,可以成功地用于实现重量存储单元和随机神经元。这些基本组件的设计为基于忆阻器的神经网络硬件实现提供了可行的解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号