首页> 外文期刊>Emerging and Selected Topics in Circuits and Systems, IEEE Journal on >Libraries of Approximate Circuits: Automated Design and Application in CNN Accelerators
【24h】

Libraries of Approximate Circuits: Automated Design and Application in CNN Accelerators

机译:近似电路图书馆:CNN加速器的自动化设计和应用

获取原文
获取原文并翻译 | 示例

摘要

Libraries of approximate circuits are composed of fully characterized digital circuits that can be used as building blocks of energy-efficient implementations of hardware accelerators. They can be employed not only to speed up the accelerator development but also to analyze how an accelerator responds to introducing various approximate operations. In this paper, we present a methodology that automatically builds comprehensive libraries of approximate circuits with desired properties. Target approximate circuits are generated using Cartesian genetic programming. In addition to extending the EvoApprox8b library that contains common approximate arithmetic circuits, we show how to generate more specific approximate circuits; in particular, MxN-bit approximate multipliers that exhibit promising results when deployed in convolutional neural networks. By means of the evolved approximate multipliers, we perform a detailed error resilience analysis of five different ResNet networks. We identify the convolutional layers that are good candidates for adopting the approximate multipliers and suggest particular approximate multipliers whose application can lead to the best trade-offs between the classification accuracy and energy requirements. Experiments are reported for CIFAR-10 and CIFAR-100 data sets.
机译:近似电路图书馆由完全表征的数字电路组成,可用作硬件加速器的节能实现的构建块。它们不仅可以加快加速器的发展,还可以采用加速器开发,而且还可以分析加速器如何响应引入各种近似操作。在本文中,我们提出了一种方法,可以自动构建具有所需特性的近似电路的全面库。使用笛卡尔遗传编程生成目标近似电路。除了扩展包含公共近似算术电路的evoappox8b库之外,我们还展示了如何生成更具体的近似电路;特别是,在卷积神经网络中部署时,MXN位近似乘数表现出有希望的结果。通过演进的近似乘法器,我们对五个不同的Reset网络进行详细的纠错分析。我们识别是采用近似乘法器的良好候选者的卷积层,并建议应用程序可能导致分类准确性和能量要求之间的最佳权衡的特定近似乘法器。报告了CiFar-10和CiFar-100数据集的实验。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号