首页> 外文期刊>Emerging and Selected Topics in Circuits and Systems, IEEE Journal on >Realtime 3D 360-Degree Telepresence With Deep-Learning-Based Head-Motion Prediction
【24h】

Realtime 3D 360-Degree Telepresence With Deep-Learning-Based Head-Motion Prediction

机译:实时3D 360度看远程呈现与基于深度学习的头部运动预测

获取原文
获取原文并翻译 | 示例

摘要

The acceptance and the dissemination of 360 degrees telepresence systems are severely restricted by the appearance of motion sickness. Such systems consist of a client-side, where the user wears a head-mounted display, a server-side, which provides a 3D 360 degrees visual representation of the remote scene, and a communication network in between. Due to the physically unavoidable latency, there is often a noticeable lag between head motion and visual response. If the sensory information from the visual system is not consistent with the perceived ego-motion of the user, and the emergence of visual discomfort is inevitable. In this paper, we present a delay-compensating 3D 360 degrees vision system, which provides omnistereoscopic vision and a significant reduction of the perceived latency. We formally describe the underlying problem and provide an algebraic description of the amount of achievable delay compensation both for perspective and fisheye camera systems, considering all the three degrees of freedom. Furthermore, we propose a generic approach that is agnostic to the underlying camera system. In addition, a novel deep-learning-based head motion prediction algorithm is presented to further improve the compensation rate. Using the naive approach, where no compensation and prediction is applied, we obtain a mean compensation rate of 72.8% for investigated latencies from 0.1 to 1.0 s. Our proposed generic delay-compensation approach, combined with our novel deep-learning-based head-motion prediction approach, manages to achieve a mean compensation rate of 97.3%. The proposed technique also substantially outperforms prior head-motion prediction techniques, both for traditional and deep learning-based methods.
机译:360摄氏度系统的接受和传播受到疾病的出现严重限制。这种系统由客户端组成,用户侧,其中用户佩戴头戴式显示器,服务器侧,其提供遥控场景的3D 360度视觉表示,以及介于之间的通信网络。由于身体不可避免的延迟,头部运动和视觉响应之间通常存在明显的滞后。如果来自视觉系统的感官信息与用户的感知自我运动不一致,并且视觉不适的出现是不可避免的。在本文中,我们介绍了一个延迟补偿3D 360度视觉系统,其提供了常牙视觉和显着降低的感知等待时间。我们正式描述了潜在的问题,并提供了考虑到所有三个自由度的透视和鱼眼相机系统的可实现延迟补偿量的代数描述。此外,我们提出了一种通用方法,即对底层相机系统不可知。另外,提出了一种新的基于深度学习的头部运动预测算法,以进一步提高补偿率。使用Naive方法,在没有施加补偿和预测的情况下,我们的平均补偿率为72.8%,对调查的延迟为0.1至1.0秒。我们提出的通用延迟补偿方法,结合我们的新型深度学习的头部运动预测方法,管理达到平均补偿率为97.3%。所提出的技术还基本上优于现有的头部运动预测技术,用于传统和深度学习的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号