首页> 外文期刊>Emerging and Selected Topics in Circuits and Systems, IEEE Journal on >A Two-Tier System for On-Demand Streaming of 360 Degree Video Over Dynamic Networks
【24h】

A Two-Tier System for On-Demand Streaming of 360 Degree Video Over Dynamic Networks

机译:动态网络上按需流式传输360度视频的两层系统

获取原文
获取原文并翻译 | 示例

摘要

360 degrees video on-demand streaming is a key component of the emerging virtual reality and augmented reality applications. In such applications, sending the entire 360 degrees video demands extremely high network bandwidth that may not be affordable by today's networks. On the other hand, sending only the predicted user's field of view (FoV) is not viable as it is hard to achieve perfect FoV prediction in on-demand streaming, where it is better to prefetch the video multiple seconds ahead, to absorb the network bandwidth fluctuation. This paper proposes a two-tier solution, where the base tier delivers the entire 360 degrees span at a lower quality with a long prefetching buffer, and the enhancement tier delivers the predicted FoV at a higher quality using a short buffer. The base tier provides robustness to both network bandwidth variations and FoV prediction errors. The enhancement tier improves the video quality if it is delivered in time and FoV prediction is accurate. We study the optimal rate allocation between the two tiers and buffer provisioning for the enhancement tier to achieve the optimal trade-off between video quality and streaming robustness. We also design periodic and adaptive optimization frameworks to adapt to the bandwidth variations and FoV prediction errors in realtime. Through simulations driven by real LTE and WiGig network bandwidth traces and user FoV traces, we demonstrate that the proposed two-tier systems can achieve a high-level of quality-of-experience in the face of network bandwidth and user FoV dynamics.
机译:360度视频点播流是新兴的虚拟现实和增强现实应用程序的关键组成部分。在此类应用中,发送整个360度视频需要非常高的网络带宽,这可能是当今网络无法承受的。另一方面,仅发送预测用户的视场(FoV)是不可行的,因为在点播流中很难实现完美的FoV预测,在这种情况下,最好提前几秒钟预取视频以吸收网络带宽波动。本文提出了一种两层解决方案,其中基本层以较低的质量和较长的预取缓冲区提供整个360度跨度,增强层使用较短的缓冲区以较高的质量提供预测的FoV。基本层为网络带宽变化和FoV预测错误提供了鲁棒性。如果及时交付且FoV预测准确,则增强层可提高视频质量。我们研究了两层之间的最佳速率分配以及增强层的缓冲区配置,以实现视频质量与流鲁棒性之间的最佳折衷。我们还设计了周期性和自适应优化框架,以实时适应带宽变化和FoV预测误差。通过由实际LTE和WiGig网络带宽轨迹以及用户FoV轨迹驱动的仿真,我们证明了面对网络带宽和用户FoV动态时,所提出的两层系统可以实现高水平的体验质量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号