首页> 外文期刊>Embedded Systems Letters, IEEE >Octopus: Context-Aware CNN Inference for IoT Applications
【24h】

Octopus: Context-Aware CNN Inference for IoT Applications

机译:章鱼:IOT应用程序的上下文感知CNN推理

获取原文
获取原文并翻译 | 示例

摘要

Modern convolutional neural networks (CNNs) in computer vision are trained on a large number of images from numerous categories to form rich discriminative feature extractors. Inference using such models on resource-constrained Internet-of-Things (IoT) platforms poses a challenge and an opportunity. Having limited computation, storage, and energy budgets, most IoT platforms are not capable of hosting such compute intensive models. However, typical IoT applications demand detection of a relatively small number of categories, albeit the specific categories of interest may change at runtime as the context evolves dynamically. In this letter, we take advantage of the opportunity to address the challenge. Specifically, we develop a novel transformation to the architecture of a given CNN, so that the majority of the inference workload is allocated to class-specific disjoint branches, which can be dynamically executed or skipped, based on the context, to fulfill the application requirements. Experiments demonstrate that our approach preserves the classification accuracy for the classes of interest, while proportionally decreasing the model complexity and inference workload.
机译:计算机愿景中的现代卷积神经网络(CNNS)培训了来自许多类别的大量图像,以形成丰富的鉴别特征提取器。推断在资源受限的互联网上使用这些模型(物联网)平台构成挑战和机会。具有有限的计算,存储和能源预算,大多数IOT平台都无法托管此类计算密集型模型。但是,典型的物联网应用需求检测到相对少量的类别,尽管上下文动态演变,但是特定类别的感兴趣类别可能会在运行时改变。在这封信中,我们利用机会解决挑战。具体地,我们对给定CNN的架构开发一种新颖的转换,使得大多数推理工作负载被分配给特定于类的不相交分支,这可以基于上下文来动态地执行或跳过以满足应用要求。实验表明,我们的方法保留了感兴趣阶层的分类准确性,同时按比例降低模型复杂性和推理工作量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号