首页> 外文期刊>Electronics Letters >Automatic epilepsy detection from EEG introducing a new edge weight method in the complex network
【24h】

Automatic epilepsy detection from EEG introducing a new edge weight method in the complex network

机译:脑电图自动癫痫检测在复杂网络中引入了一种新的边缘权重方法

获取原文
获取原文并翻译 | 示例

摘要

Automatic diagnosis of epilepsy using electroencephalogram (EEG) signals is a hot topic in medical community as traditional diagnosis relies on tedious visual screening by highly trained clinicians from lengthy EEG recording. Hence, a new methodology to automatically detect epilepsy from EEG signals considering complex network as the principal dynamics of the epileptic EEG signals can be perfectly described by complex network is introduced. A novel edge weight method for visibility graph in the complex network for detection of epilepsy syndrome is presented. The effect of new edge weights for one key characteristic (such as, average weighted degree) of complex network is investigated. Finally, the extracted feature set is evaluated by two popular machine learning classifiers: support vector machine (SVM) with several kernel functions and linear discriminant analysis. The experimental results on Bonn University datasets show that the proposed approach is able to characterise the epilepsy from EEG signals generating up to 100% classification performance by SVM with polynomial kernel.
机译:使用脑电图(EEG)信号自动诊断癫痫病是医学界的热门话题,因为传统诊断依赖于训练有素的临床医生从冗长的EEG记录中进行乏味的视觉筛查。因此,介绍了一种新的方法,可以从复杂的网络中完美地描述一种将复杂的网络视为癫痫性脑电信号的主要动力学特征的自动从脑电信号中检测癫痫的方法。提出了一种新的边缘权重方法,用于在复杂网络中检测癫痫综合征的可见度图。研究了新边缘权重对复杂网络的一个关键特征(例如平均加权度)的影响。最后,提取的特征集由两个流行的机器学习分类器评估:具有多个内核函数的支持向量机(SVM)和线性判别分析。在波恩大学数据集上的实验结果表明,所提出的方法能够通过带有多项式核的SVM识别脑电信号中的癫痫病,从而产生高达100%的分类性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号