首页> 外文期刊>IEEE Transactions on Electron Devices >Degradation mechanism in carbon-doped GaAs minority-carrier injection devices [HBTs]
【24h】

Degradation mechanism in carbon-doped GaAs minority-carrier injection devices [HBTs]

机译:碳掺杂GaAs少数载流子注入装置的降解机理[HBTs]

获取原文
获取原文并翻译 | 示例

摘要

Degradation behavior and mechanism of GaAs-based devices under minority-carrier injection has been studied by measuring the increase in the leakage current and the luminescence lifetime of minority carriers. It is found that hydrogen unintentionally incorporated in GaAs-based devices induces degradation under minority-carrier injection, i.e., increase in injection leakage current at low bias voltage. "Isolated" hydrogen donors (H/sup +/) induce rapid degradation, and even carbon-hydrogen (C-H) complexes which are believed to be electrically neutral induce slow degradation. Degradation is induced by the decomposition of the C-H complexes, enhanced by minority-carrier injection producing electrically active isolated hydrogen donors (H/sup +/). The kinetics of the leakage current increase are well explained by the decomposition kinetics of the C-H complexes. Under minority-carrier injection, H/sup +/ changes to hydrogen acceptors (H/sup - /) by capturing two electrons. Hydrogen donors (H/sup +/) and hydrogen acceptors (H/sup -/) combine and become a molecular hydrogen which Is thought to form {111} platelets. This decomposition mechanism are not due to recombination-enhanced defect reaction (REDR) but is related to charge state effects by two-electron capturing. We infer that the degradation mechanism is closely related to the leakage through the {111} platelets.
机译:通过测量少数载流子的泄漏电流和发光寿命的增加,研究了GaAs基器件在少数载流子注入下的降解行为和机理。已经发现,无意地掺入基于GaAs的器件中的氢在少数载流子注入下引起降解,即在低偏置电压下注入漏电流的增加。 “分离的”氢供体(H / sup + /)引起快速降解,甚至被认为是电中性的碳氢(C-H)络合物也引起缓慢的降解。降解是由C-H配合物分解引起的,而少数载流子注入促进了C-H配合物的分解,产生了电活性隔离的氢供体(H / sup + /)。 C-H配合物的分解动力学很好地解释了泄漏电流增加的动力学。在少数载流子注入下,H / sup + /通过捕获两个电子而变为氢受体(H / sup-/)。氢供体(H / sup + /)和氢受体(H / sup-/)结合并成为分子氢,据认为形成{111}血小板。这种分解机制不是由于重组增强缺陷反应(REDR)引起的,而是与通过双电子捕获产生的电荷状态效应有关。我们推断降解机理与通过{111}血小板的渗漏密切相关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号