...
首页> 外文期刊>IEEE Transactions on Electron Devices >A comprehensive study of hot carrier stress-induced drain leakage current degradation in thin-oxide n-MOSFETs
【24h】

A comprehensive study of hot carrier stress-induced drain leakage current degradation in thin-oxide n-MOSFETs

机译:薄氧化物n-MOSFET中热载流子应力引起的漏极泄漏电流退化的综合研究

获取原文
获取原文并翻译 | 示例
           

摘要

The mechanisms and characteristics of hot carrier stress-induced drain leakage current degradation in thin-oxide n-MOSFETs are investigated. Both interface trap and oxide charge effects are analyzed. Various drain leakage current components at zero V/sub gs/ such as drain-to source subthreshold leakage, band-to-band tunneling current, and interface trap-induced leakage are taken into account. The trap-assisted drain leakage mechanisms include charge sequential tunneling current, thermionic-field emission current, and Shockley-Read-Hall generation current. The dependence of drain leakage current on supply voltage, temperature, and oxide thickness is characterized. Our result shows that the trap-assisted leakage may become a dominant drain leakage mechanism as supply voltage is reduced. In addition, a strong oxide thickness dependence of drain leakage degradation is observed. In ultra-thin gate oxide (30 /spl Aring/) n-MOSFETs, drain leakage current degradation is attributed mostly to interface trap creation, while in thicker oxide (53 /spl Aring/) devices, the drain leakage current exhibits two-stage degradation, a power law degradation rate in the initial stage due to interface trap generation, followed by an accelerated degradation rate in the second stage caused by oxide charge creation.
机译:研究了薄氧化物n-MOSFET中热载流子应力引起的漏极泄漏电流退化的机理和特性。分析了界面陷阱和氧化物电荷效应。考虑了零V / sub gs /下的各种漏极泄漏电流分量,例如漏极至源极的亚阈值泄漏,带间隧穿电流以及界面陷阱引起的泄漏。陷阱辅助的漏极泄漏机制包括电荷顺序隧穿电流,热电子场发射电流和肖克利·雷德霍尔产生电流。表征了漏极泄漏电流对电源电压,温度和氧化物厚度的依赖性。我们的结果表明,随着电源电压的降低,陷阱辅助泄漏可能成为主要的漏极泄漏机制。另外,观察到漏极漏泄退化的强烈的氧化物厚度依赖性。在超薄栅氧化物(30 / spl Aring /)n-MOSFET中,漏极泄漏电流的降低主要归因于界面陷阱的产生,而在较厚的氧化物(53 / spl Aring /)器件中,漏极泄漏电流表现出两级退化,是由于界面陷阱生成而在初始阶段的幂律退化率,随后是由于氧化物电荷的产生而导致的第二阶段的加速退化率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号