...
首页> 外文期刊>IEEE Transactions on Electron Devices >Impact of Bias and Device Structure on Gate Junction Temperature in AlGaN/GaN-on-Si HEMTs
【24h】

Impact of Bias and Device Structure on Gate Junction Temperature in AlGaN/GaN-on-Si HEMTs

机译:偏置和器件结构对AlGaN / GaN-on-Si HEMT中栅极结温度的影响

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The thermal impact of device bias-state and structures (such as source connected field plates, gate-pitch, back-vias, and number of gate fingers) in AlGaN/GaN-on-Si high electron mobility transistors (HEMTs) are measured using gate metal resistance thermometry (GMRT). The technique characterizes the thermal response of device gate metallization to determine the gate-epilayer junction temperature $(T_{j})$ , which is directly influenced by the channel heat source due to its close proximity. It is found that low gate leakage levels in GaN HEMTs make them favorable candidates for GMRT. Bias-dependent self-heating, independent of power dissipation, is observed in the devices. Therefore, $T_{j}$ of different device configurations are compared at constant bias state, as well as constant power density (3.75 W/mm) to improve accuracy. $T_{j}$ reduction is observed at high drain bias due to the migration of the channel heat source toward the gate field plate edge. This provides independent experimental validation for a reported electrothermal model [7]. A 3-D thermal finite element method model is presented, which simulates measured $T_{j}$ rise to within ${sim}{6%}$ across a range of device configurations and operating conditions. This is ultimately made possible upon implementation of a thermal boundary resistance layer and extraction of its temperature response using GMRT data.
机译:使用以下方法测量AlGaN / GaN-on-Si高电子迁移率晶体管(HEMT)中器件偏置状态和结构(例如源极连接的场板,栅距,反向过孔和栅指的数量)的热影响栅极金属电阻测温(GMRT)。该技术表征了器件栅极金属化的热响应,以确定栅极-外延层结温$(T_ {j})$,该温度由于其紧密接近而直接受到沟道热源的影响。已经发现,GaN HEMT中较低的栅极泄漏水平使其成为GMRT的有利候选者。在器件中观察到与偏置有关的自发热,与功耗无关。因此,在恒定偏置状态和恒定功率密度(3.75 W / mm)下比较了不同器件配置的$ T_ {j} $,以提高精度。由于沟道热源向栅极场板边缘迁移,在高漏极偏置下观察到$ T_ {j} $减小。这为报告的电热模型提供了独立的实验验证[7]。提出了一种3D热有限元方法模型,该模型可在一系列设备配置和操作条件下模拟测量到的$ T_ {j} $上升到$ {sim} {6%} $以内。在实施热边界电阻层并使用GMRT数据提取其温度响应后,最终可以实现这一点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号